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Abstract Consider N bosons in a finite box A = [0, L]* C R? interacting via a two-body
smooth repulsive short range potential. We construct a variational state which gives the
following upper bound on the ground state energy per particle

eo(p) —4map - 16
4ma)’2(p)3/?2 ) — 1572’

lim,olim; oo /13- (

where a is the scattering length of the potential. Previously, an upper bound of the form
C16/157? for some constant C > 1 was obtained in (Erdds et al. in Phys. Rev. A 78:053627,
2008). Our result proves the upper bound of the prediction by Lee and Yang (Phys. Rev.
105(3):1119-1120, 1957) and Lee et al. (Phys. Rev. 106(6):1135-1145, 1957).
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1 Introduction

The ground state energy is a fundamental property of a quantum system and it has been
intensively studied since the invention of the quantum mechanics. The recent progresses in
experiments for the Bose-Einstein condensation have inspired re-examination of the theo-
retic foundation concerning the Bose system and, in particular, its ground state energy. In
the low density limit, the leading term of the ground state energy per particle was identified
rigorously by Dyson (upper bound) [3] and Lieb-Yngvason (lower bound) [14] to be 47 ap,
where a is the scattering length of the two-body potential and o is the density. The famous
second order correction to this leading term was first computed by Lee-Yang [10] (see also
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454 H.-T. Yau, J. Yin

Lee-Huang-Yang [9] and the recent paper by Yang [16] for results in other dimensions). To
describe this prediction, we now fix our notations: Consider N interacting bosons in a finite
box A = [0, L]* C R? with periodic boundary conditions. The two-body interaction is given
by a smooth nonnegative potential V of fast decay. The Lee-Yang’s prediction of the energy
per particle up to the second order is given by

eo(p) =4nga[1 + ——(0a®)'* + ] (1.1

15\/_
The approach by Lee-Yang [10] is based on the pseudo-potential approximation [7, 9] and
the “binary collision expansion method” [9]. One can also obtain (1.1) by performing the
Bogoliubov [1, 2] approximation and then replacing the integral of the potential by its scat-
tering length [8]. Another derivation of (1.1) was later given by Lieb [11] using a self-
consistent closure assumption for the hierarchy of correlation functions.

In the recent paper [4], the potential V' was replaced by AV, for some fixed function Vj
and A is small. A variational state was constructed to yield the rigorous upper bound

8 3v1/2 2
eo(p) <4moa|l+ —=(0a’) 'S, | + O(¢”|logol) (1.2)

157

with S, <1+ CA. In the limit A — 0, one recovers the prediction of Lee-Yang [10] and
Lee-Huang-Yang [9]. The trial state in [4] does not have a fixed number of particles, and is
a state in the Fock space with expected number of particles N (presumably a trial state with
a fixed number of particles can be constructed with a similar idea). The trial state in [4] is
similar to the trial state used by Girardeau and Arnowitt [5] and recently by Solovej [15]; it
is of the form

exp[mr' > aaja’ aya, + \/Noag] |0) (1.3)
k

where ¢, and Ny have to be chosen carefully to give the correct asymptotic in energy. This
state captures the idea that particle pairs of opposite momenta are created from the sea of
condensate consisting of zero momentum particles. It is believed that this type of trial state
gives the ground state energy consistent with the Bogoliubov approximation. In the case of
Bose gas, the Bogoliubov approximation yields the correct energy up to the order p/2, but
the constant is correct only in the semiclassical limit—consistent with the calculation using
the trial state (1.3). It should be noted that the Bogoliubov approximation gives the correct
“correlation energy” in several setting including the one and two component charged Boson
gases [12, 13, 15] and the Bose gas in large density-weak potential limit [6].

For the Bose gas in low density, the result of [4] suggests to correct the error by renor-
malizing the propagator. Unfortunately, it is difficult to implement this idea. Our main ob-
servation is to relax the concept of condensates by allowing particle pairs to have nonzero
total momenta. More precisely, we consider a trial state of the form

-1
exp[|A| Z Z 2 )‘k‘HJ/Zk*k+v/2az+v/2aik+v/2av o
k v~/p

+IAITY eafa’agaq + \/Noag}m) (1.4)
k

for suitably chosen ¢ and A. Notice that the total momentum of the pair, v, is required to
be of order p'/? and the constant 2 comes from the ordering of a,ay. We shall make further
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simplification that A; = c¢;. Even with this simplification, however, this state is still too com-
plicated. We will extract some properties from this representation and define an N particle
trial state whose energy is given by the Lee-Yang’s prediction up to the second order term.
Details will be given in Sect. 3. Our result shows that, in order to obtain the second order
energy, the typical ansatz for the Bogoliubov approximation should be extended to allow
pair particles with nonzero momenta. This also suggests that the Bogoliubov approximation
has to be modified in order to yield the correct energy of the low density Bose gas to the
second order.

2 Notations and Main Results

Let A =[0,L]> C R? be a cube with periodic boundary conditions with the dual space
= (%2)3. The Fourier transform is defined as

~ . 1 .
W, :=W(p) :/ W) dx, W) =— > "W,
ek Al &2

Here we have used the convention to denote the Fourier transform of a function W at the
momentum p by W, instead of W( p) to avoid too heavy notations. Since the summation of
p is always restricted to A*, we will not explicitly specify it.

We will use the bosonic operators with the commutator relations

1 ifp=gq,

¥ + T
a ,a'l=a,a —a'a, = .
[ P’ q] r“q q9"p {0 otherwise.

The two body interaction is given by a smooth, symmetric non-negative function V (x) of
fast decay. Clearly, in the Fourier space, we have V, = V_, = V,. Furthermore, we assume
that the potential V' is small so that the Born series converges. The Hamiltonian of the many-
body systems with the potential V and the periodic boundary condition is thus given by

2
H= Zpaa —i—mZVapaqap WGyt (2.1)

p.q.u

Let 1 — w be the zero energy scattering solution
—Al—-w)+ V(A —-w)=0

with 0 < w < 1 and w(x) — 0 as |x| = oo. Then the scattering length is given by the
formula

1
a:.= —/ V(x)(1 —w(x))dx.
4 R3
Introduce gy, whose meaning will be explained later on, to denote the quantity
go=4ma.

Let Hy be the Hilbert space of N bosons. Denote by py = N/A the density of the
system. The ground state energy of the Hamiltonian (2.1) in Hy is given by

EOP (p, A) =infspec Hy,
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and the ground state energy per particle is e} (o, A) = E[' (p, A)/N. We can also consider
other boundary conditions, e.g., ¢f (p, A) is the Dirichlet boundary condition ground state
energy per particle.

In this paper, we will always take the limit L — oo so that the density py — p for
some fixed density p. From now on, we will use lim;_. o, for the more complicated notation
lim;_, o /13- ,- We now state the main result of this paper.

Theorem 2.1 Suppose the potential V is smooth, symmetric, nonnegative with fast decay
and sufficiently small so that the Born series converges. Then the ground state energy per
particle satisfies the upper bound

lim lim
p—>0 L—00

(6’5(1), A)— goP) _ 16 e

5/2 = :
& p3? 1572
Although we state the theorem in the form of limit p — 0, an error bound is available
from the proof. We avoid stating such an estimate to simplify the notations and proofs. Our
result holds also for Dirichlet boundary condition.

2.1 Reduction to Small Torus with Periodic Boundary Conditions

To prove Theorem 2.1, we only need to construct a trial state W(p, A) satisfying the bound-
ary condition and

lim lim
p—>0A—00

<<HN>WNI —gop) __16 (2.3)

5/2 — :
80/ 032 1572

The first step is to construct a trial state with a Dirichlet boundary condition in a cube of

order slightly bigger than p~'.

Lemma 2.1 For density p small enough, there exist L ~ p~>/** and a trial state ¥ of N
(N = pL?) particles on A = [0, L1? satisfying the Dirichlet boundary condition and

lim . 2.4
p—0 g2 p32 ~ 1572 24

.—<<HN>\UN1 - goP) - 16
Once we have a trial state with the Dirichlet boundary condition, we can duplicate it so
that a trial state can be constructed for cubes with linear dimension > p~2°/%*. This proves
Theorem 2.1.
The next lemma shows that a Dirichlet boundary condition trial state with correct energy
can be obtained from a periodic one.

Lemma 2.2 Recall the ground state energies per particle el (p, A) and el (p, A) for the
Dirichlet and periodic boundary condition. Let A = [0, L]? and L = p~2/**. Suppose the
energy for the periodic boundary condition satisfies that

lim
p—0

(eé’(p, A) - gop) _ 16 2.5)

5/2 - '
g p32 1572
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Then for A =0, Z]3, L= L(142p%/) and p = ,0L3/Z3, the following estimate for the

energy of the Dirichlet boundary condition holds:

— (el (B, N) — gop 16

lim (60 (PS/ZZ gop) = 2"
£o p3/2 157

(2.6)

p—0

The construction of a periodic trial state yielding the correct energy upper bound is the
core of this paper. We state it as the following theorem.

Theorem 2.2 There exists a periodic trial state W of N particles on A =[0,L]?, L =
p 5% such that (N = |A|p)

— ((Hy)oN~"' —gop 16
Tim % 5 <—. 2.7
p—0 &0 ,03/2 157

This paper is organized as follows: In Sect. 3, we define rigorously the trial state. In
Sect. 4, we outline the lemmas needed to prove Theorem 2.2. In Sect. 5, we estimate the
number of particles in the condensate and various momentum regimes. These estimates are
the building blocks for all other estimates later on. In Sect. 6, we estimate the kinetic energy.
The potential energy is estimated in Sects. 7-11. Finally in Sect. 12, we prove the reduction
to the periodic boundary condition, i.e., Lemma 2.2. This proof follows a standard approach
and only a sketch will be given.

3 Definition of the Trial State

We now give a formal definition of the trial state. This somehow abstract definition will
be explained later on. We first identify four regions in the momentum space A* which are
relevant to the construction of the trial state: P, for the condensate, P; for the low momenta,
which are of the order p'/?; Py for momenta of order one, and P; the region between Py,
and Py.

Definition 3.1 Define four subsets of momentum space: Py, Py, P; and Py.

Po={p=0},
PL={peAerp'? <Ipl <n;'p'?}.
Cin (3.1)
Pr={peAin'p'? <|pl <en},
Py ={peAen <Ipl}.
where the parameters are chosen so that
er,nL,eg=p" and n=1/200. (3.2)

Denote by P = PyU P, U P; U Py.

We remark that the momenta between Py and P;, are irrelevant to our construction. Next,
we need a notation for the collection of states with N particles.
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Definition 3.2 Let M be the set of all functions « : P — N U 0 such that

> alk)=N. (3.3)

keP

For any a € M, denote by |a) € Hy the unique state (in this case, an N-particle wave
function) defined by the map o

) =C T [@)*®10),
keP
where the positive constant C is chosen so that |a) is L, normalized. Define oy as
Ofree (k) = NSOA,k-
Clearly, we have

alarla) = a(k)|a), Vke P. (3.4)

Definition 3.3 We define two relations between functions in M:

1. Strict pair creation of momentum k: Denote by B := A¥a if B is generated by creating a
pair of particles with momenta k and —k, i.e.,

a(p)—2, p=0,
B(p)=1{a(p)+1, p==k, (3.3)
a(p), others.

In terms of states, we have
+ 4+ 2
|B8) =Ca; a”aqla)

where C is a positive constant so that the state |B) is normalized.

2. Soft pair creation with total momentum u and difference 2k: Denote by B = A" *a if B is
generated by creating two particles with high momenta £k + u/2 € Py so that the total
momentum u is in Py, i.e.,

a(p)—1, p=0or u,

Bp)=qap)+1, p==xk+u/2, (3.6)
a(p), others.

Notice that A**« is defined only if £k 4 u/2 € Py. In terms of states, we have
1B) = Ca;—+u/2ajk+u/2aoaLl o)

where C is the normalization constant. Since B(p) has to be nonnegative, the state A*a
or A*a is not defined for all o or k, u.

Define D, to be the set all possible derivations of a from the previous two operations:
D, =|A"*a e M}U {AaecM). 3.7

Our trial state will be of the form ) 5 f («)|a) where f is supported in a subset of M
which we now define.
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The Second Order Upper Bound for the Ground Energy of a Bose Gas 459

Definition 3.4 Fix a large real number k.. We define M as the smallest subset of M such
that

1. Ufree € M.

2. M is closed under strict pair creation provided the momentumu € P;U Py, i.e.,ifa € M
and A'oa € M then A'a € M.

3. M is closed under strict pair creation provided the momentum u € P; and max{a(u),
a(—u)} <me,ie.,ifa e M and A'a € M, then A"a € M. Here we choose m. as

me=p"=p'2% (3.8)

4. M is closed under soft pair creation from states with perfect pairing of momenta u and
—u. More precisely, for u € Py with a(u) = a(—u), ifo € M, A%*a € M and

ey <|xk+u/2| <k,

then A% e M.

The set M is unique since the intersection of two such sets M; and M, satisfies all four
conditions.

For any u € P, we define the set of states with symmetric (asymmetric resp.) pair parti-
cles of momenta u, —u by M;, (M resp.):

M, ={a e Mla() =a(—u)},
M ={a e Mla(u) # a(—u)}. 3.9)

Denote by o* (1) the maximum of () and o (—u):
a* () = max{o(u), a(—u)}. (3.10)

Since soft pair creation was allowed only from momenta in P, and the final momenta are in
Py, we have

() —aw) €{0,1}, a(—u)=au), forallue P;.

Before defining the weight f («), we introduce several quantities related to the scattering
equation. In the momentum space, the scattering equation is given by (p € R?)

—pzwp+v,,—/v,,,,w,:0, Vp #0. (3.11)

Let g be the function
gx)=Vx)(1 —w)). (3.12)

Then the scattering equation in momentum space takes the form

gy =pw, VYp#0. (3.13)

One can check 4w a = g this explains the notation g, used in Theorem 2.1 and Theorem 2.2.
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460 H.-T. Yau, J. Yin

Definition 3.5 Define for all € 0

1
pe=po+ep’?  poi=p— F(go)”zp”, (3.14)

where po will be the approximate density of the condensate. Define the “chemical potential”
A by

1=+/1+4pgo k=2 4
TP ke P,
M= 1 144/ 1+4pgolklI~

— Wy, k€P1UPH.

(3.15)

One can check that, to the leading order, A is given by

1= 1+ 4pgilk| 2
ohy = +dpglkl (3.16)
1+ 1+ 4pgilk] 2

Notice that X is real number and can be negative.

Definition 3.6 (The Trial State) Let W be defined by

W= Z f@)a) (3.17)
aeM
where the coefficient f is given by
|A© dor* (u) s
=Cy,|—— A ® —. 3.18
f@=Cn | o [ [/20 I1 Al (3.18)
k#0 uePp,o*(u)—a(u)=1

Here we follow the convention /x = /]x|i for x < 0. For convenience, we define f(a) =0

for a ¢ M. The constant Cy is chosen so that V is L, normalized, i.e.,
(VW) =1.

Theorem 3.1 Suppose A = [0, L]* and L = p=23/**. Then the trial state ¥ in (3.18) satis-
fies the estimate

lim lim
ke—00 p—0

<<HN)\I'N1 —gop) _ 16 (3.19)

5/2 - ’
g ?p32 1572

where k. is given in Definition 3.4. We recall that mc_l, &L, ML,y are chosen as a small
power of p in (3.2) and (3.8).

3.1 Heuristic Derivation of the Trial State
We now give a heuristic idea for the construction of the trial state. Fix an ordering of mo-

menta in A* so that the first one is the zero momentum. We will use the occupation number
representation so that

|ny, n,...) (3.20)
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represents the normalized state with n; particles of momentum k;. For example,
1

~/N!

Recall that we would like to generate a state of the form in (1.4). A slightly modified one is

1 ¥ T
eXP[V\l Y D 2V k2 pal @,

kv~ /p

IN,0,0,...)= (ap)™10).

+IAITY hajaa ao]uv,o, 0,...). (3.21)
k

We now expand the exponential and require that a; v /zai k+v/28y G O appear at most
once. The rationale of this assumption is that the soft pair creation is a rare event and thus
we can neglect higher order terms. Our trial state is thus a sum of the following state para-
metrized by ki, ..., ks, ny, ..., 05, k), ...k and vy, ..o, v

t s
const. [ T 4%+ 2h i vy 2 [ [ )" let) (3.22)
j=1 i

i=l

where

t
P o + B
la) = const. |[A| " Xi=1" | |a1,, ab, a a
Lk Lk Vi
j=1 200 2T

5

1 + n;
< [[—(ala’yagay )" IN.0,...). (3.23)

n;!
i=1""

Here we have chosen the constant so that the norm of |«) is one. We also require that
v +v; #0for 1 <i, j <t since v; + v; =0 is a higher order event.

We further make the simplifying assumption that v; € P.. Observe now that the state
|a) can be obtained from strict and soft pair creations. This explains the core idea behind
the definition of M in Definition 3.4. Other restrictions in the definition were mostly due to
various cutoffs needed in the estimates. Finally, up to factors depending only on A and N,
the coefficient in (3.22) gives f(«) in (3.18). Notice all factors depending on s, t, n; were
already included in |o).

The choice of A is much more complicated. To the first approximation, A can be obtain
from the work of [4]. We thus use this choice to identify the error terms. Once this is done,
we optimize the main terms and this leads to the current definition of A. Notice that, since
our trial state is different, there are more main terms than in [4].

4 Proof of Theorem 2.2

Proof Our goal is to prove

-1 _ 2
E(ECA' (H)y — 8op ))< 16 g5/2. 4.1)

ke—o00 \ p—0 p5/2 - 157‘[2 0
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Here go =4ma, (H)y = (V|H|V). We decompose the Hamiltonian as follows:
N
HZZ—Ai + Hg1 + Hso + Hgs + Ha1 + Hao, 4.2)

where

1. Hg; is the part of interaction that annihilates two particles and creates the same two
particles, i.e.,

Hg =A™ Y Voajajawa, + A7) (Vaey + Vo)agajauay. (4.3)
u u#v

2. Hjy, is the interaction between the condensate and strict pairs, i.e.,

Hg = |Al” Z Vala® apag+ C.C. 4.4)
u7#0

3. Hgs is the part of interaction that strict pairs are involved, i.e.,
Ha=|AI"" ) Viaja aa,. (4.5)
u,v#0,u#v

4. Hy, is the part of the interaction that one and only one condensate particle is involved
ie.,

Hy =A™ Z ZVUZGSGIIC%ZGU; +C.C. (4.6)

v1,v2,0370

5. Hyy is the part of the interaction which is not counted in Hg; and there is no condensate
nor strict pair involved i.e.,

-1
Hy = A > Vi v}, @l au,a,. (4.7)
v; 70,01 +v2#0,{v1, v2}#{v3,v4}

The estimates for the energies of these components are stated as the following lemmas,
which will be proved in later sections.

Lemma 4.1 The total kinetic energy is bounded above by

N 32 5/2
— (1 ) 2\ U5 4lVwlig, 88
_ E — A — <
}clcr,lg(ll\|<l.=l Al>w ,OOIIVwII2>p = 372 572 4.8)

Lemma 4.2 The expectation value of Hg; is bounded above by,

: 1 2 —5/2 4V0g3/2
}(1:13<|A| (Hs1)w PoV())P = 322 4.9)
Lemma 4.3 The expectation value of Hg, is bounded above by,
y P
}3‘“3(|A| <H32>\y+2,00||vw||1> e (4.10)
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Lemma 4.4 The expectation value of Hgs is bounded above by,
32
s —20Vwlhe

Fm( — (Hsy)y — 221V
1m (Hs3)y — pg VWil | o )

ke,p |A|

Lemma 4.5 The expectation value of Hy, is bounded above by,
3/2

—( 1 - —8|[Vwlig
Iiml — (H 5/2 o _Z0 7 750
k(‘,/><|A| ( A1>\y>:0 = 372

Lemma 4.6 The expectation value of H s, is bounded above by,
3/2

(1 - 4IVwlhg
liml — (H 52 L 07 7 1050
k(~.p<|A| ( AZ)\y)p = 372

By definitions of gy and w (3.11), (3.12), we have

IVwl3 = [Vwlli + IVw?[li =0,  Vo—[Vwll = g.

Summing (4.8)—(4.13), we have

(1 26g."*
lim( — (Hy)y — pg <20
klf,ﬂ<|A|< N pogo>p < T5n2

By definition of py (3.14), we have proved (4.1).

5 Estimates on the Numbers of Particles

@.11)

(4.12)

(4.13)

(4.14)

(4.15)

The first step to prove the Lemma 4.1 to Lemma 4.6 is to estimate the number of particles
in the condensate, Py, P;, and Py. This is the main task of this section and we start with the

following notations.

Definition 5.1 Suppose u;, kj e P fori =1,...,t,j=1,...,s.

1. The expectation of the product of particle numbers with momenta u, . ..

O (ur, itz .. uy) = <1‘[aw> =Y [Jewif@P.
i=1

v aeM i=1
2. The probability to have m; particles with momentum u;,i =1, ...,s:
Qu ({ur,mi}, ... fu,mH =Y [ f (@), (5.1)
a€cA
Here A = {Ol eM|a(u))=my,...,co(u;) :m,}.
3. The expectation of the product of particle numbers with momenta ki, . . ., kg, conditioned

that there are m; particles with momentum u;:

QW(klv"'!ksl{ul’ml}""v{ulam[})
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-1
Z|f(a>|2> :

acA

= (Zf[a(k,-nf(anz)(

acA i=1

where A is the same as in item 2.

The following theorem provides the main estimates on the number of particles.

Theorem 5.1 In the limit limg,_, o lim,_.o, Qu (1) can be estimated as follows

lim hm< SRAC Y Q\p(u)>:0

ke=>00 p= ueP;UPy
—3/2 - 3/2
Jim m( Al ZQWO) 38
uePy,

We first collect a few obvious identities of f into the following lemma.

Lemma 5.1

1. Ifke P/ U Py and o, Aka € M, then

oy 2O [0 =1
fA ) = Al Al A f ().

2. Ifke P,ae M} and o, A*a € M, then

iy~ 2@ [e@ T
fA@) = N N A f ().

3. Ifke Pr,ae M and o, A*a € M, then

e a0 [a@) =1 [a*(k)+1
f(Aa)—\/w\/ N \/a*(k) hf (@)

4. Ifa € M* and A**o € M, then

" a(0) [o(u)
f(A ) = 2, W‘/ W,MH% Akgu f@).

5. Ifa e M and Atk e M, then

f(.Au'kOl) —

1 [a [ 1Al
20\ TAL Y way VeV Ak S0

(5.2)

(5.3)

6.4

(5.5)

(5.6)

(5.7)

(5.8)

In defining the space M, the operation A“*« is not allowed when o € M¢. However, it
is possible through rare coincidences that A**a € M even if a € M. Clearly, « € M and
A**o; € M imply that o(u) = ae(—u) + 1. The following lemma summarizes some properties

we need for A.
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Lemma 5.2

1. Foranyk € PL U P; U Py, A only depends on |k| and
Ihel < gelk|™> < golk] 2, lpAk] <1 —const.eg. (5.9)

2. Forany k € Pr, A is negative and

80 _
—SnpT Z = o7 (5.10)
3. Forany k € Py, |A| is bounded as
%l < o7 (5.11)

To prove Theorem 5.1, we start with the following estimate on the condensate.

Lemma 5.3 Forany e > 0, when p is small enough, the expected number of zero-momentum
particles can be estimated by

[Alp-e < Qu (0) < |A]pe. (5.12)
5.1 A Lower Bound on the Number of Condensates
Since the total number of particles in fixed to be N, upper bound on Qy (u) for (u # 0) yields
a lower bound for Qy(0). The following lemma provides the upper bounds for expected

number of particles in various momentum space regions.

Lemma 5.4 For small enough p, the following upper bounds on Qy (u) hold:

1. Foru € Py,
I’O 1
Qv <7755 Z(xumz (5.13)
2. Foru e Py,
AP’ P,
Qu(u) = 5 e 2( o ) (5.14)
3. Foru € Py,
Qu(u) < const. p2|u| 2| Ayl (5.15)

Proof The basic idea to prove Lemma 5.4 is the following lemma which compares, in par-
ticular, Q¢ ({u, m}) and Q¢ ({u, m — 1}).

Proposition 5.1 When p is small enough, for any u € P;, we have
Qu({u,m}) < Guup)” Qu{u,m —i}) form=>i>1. (5.16)

Proof We start with the following simple observation, whose proof is obvious and we omit
it.
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Proposition 5.2 For any u € P; fixed and all « € M with a(u) = m > 1, there exists a
B € M such that A*B =« and B(u) =m — 1.

From the property of f in (5.4) and 8(0) < N, we obtain

B(0)

|f(A“B)] = Ay Imlf(ﬂ)l <lulpf (B

Therefore, we have for m > 1

Qu{u,m)) < Y If(ABLP<rp D If B

Bw)=m—1 Bw)=m—1
= 120> Qy ({u,m — 1). (5.17)
This proves (5.16) for i = 1. The general cases follow from iterations. O

Together with >"_ Oy ({u, m}) = 1, we have

N

N
Qu(u) = Zme({u m} =Z<Z Qw<{u,m})>

m=1 i=1

2 2
< Z(m)zl (Z Qu ({u, m})) (5.18)

m=0

This proves (5.13).

We now prove (5.14). Recall that p is small, 1 <m <m, and u € P, . From the definition
of M (3.9), all elements in the asymmetric part, M, are generated from the symmetric part
M, via soft pair creations. Thus

o (u)=m Bw)=m
dof@lP=s Y ( > If(A"’kﬁ)lz). (5.19)
a:aeMy B:BeM;, “k:itk+u/2€Py

From (5.7), we have, for S(u) <m,

. B(0) Bu)
F A BY2 = Al dppujoh ] —— |A| lA‘" £ B
< Ao mm If(ﬁ)l (5.20)

Using the upper bound of A; in (5.9) and |u| < |k|, we have

—4 -1
Z |)Lk+,,/2)\_k+u/2| < Z const. |p|™" <const.e5 |Al. (5.21)
k:tk+u/2€ Py pEPy

Inserting these results into (5.19), we obtain

Y f@Psconst 223 ppP (5.22)
EH
B:BeM;;, B(u)=m

a:aeMf a* (u)=m

@ Springer



The Second Order Upper Bound for the Ground Energy of a Bose Gas 467

Summing the last bound over 1 <m < m,, we have, for each u fixed,

3 If @ < const. ‘;—":. (5.23)

a:aeMyf

Using this method, we can also prove, for u # Fv,

2
3> 1f @) < const. (’; m) . (5.24)

H
a:aeMf ,aeMg

From (5.22), we have, for p is small enough

me a(u)=m
0u(u) < Z(m 3 |f(a)|2) (1 + const. ‘;i) (5.25)

m=1 a:aeM; H

Following the proof of (5.17), we have the bound

aeM; BeM;
[Z If(a)l] <’ 2[ > If(ﬂ)lz}. (5.26)

aa(u)=m B:Bu)=m—1

Therefore, we can prove (5.14) using the argument of (5.18).
‘We now prove (5.15) by starting with the following proposition. Once again, the proof is
straightforward and we omit it.

Proposition 5.3 For any u € Py fixed and all o € M with «(u) =m > 1, either there exists
B € M such that A“B =« and B(u) =m — 1 or there exists v € Py and € M such that
o= Av,ufv/ZlB.

From this proposition, we have

BeM;

Qu{u,mh< Y {If(A“ﬂ)ler > If(A”‘””/zﬁ)Iz}. (5.27)

B:Bw)y=m—1 vePp, AV u=v/2geM

By the properties of f in (5.4), (5.7), we obtain

|FABP+ Y I fAY TP < (pzxi +y 4p% A Lu+v|>|f(/3)lz.

vePyp veP

Since v € P; and u € Py, from (5.9) we have |A,|, |A_,4o| < const. |u|~2. By definition of
M, B(v) <m.. Thus

B)
IBRANEDD mep?!

vePr

| A |
Hence we have

[FCA“ B+ D IF (A B)I” < const. |ul > [h| 021 £ (B

vePr
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Together with the bound in (5.27), we obtain
Qu({u,m}) < const. |2,llul 0> Qu({u,m —1}) form > 1. (5.28)
Summing the last inequality over m, we have proved (5.15). a

The summations in the inequalities in Lemma 5.4 can be performed; we summarize the
conclusions in the following lemma.

Proposition 5.4 Recall that €;, 0, ey are chosen in Definition 3.1 as p". Then for any k.
and small enough p we have

IAIT" ) Qu(w) < const. p¥/>+7, (5.29)
uePy
AT Quwy <p™, (5.30)
uePy
g3/2
A7) Qua) < (307 +const. p">p3/2. (5.31)
uepPr

Assuming this proposition, we have, for any ¢ > 0, when p is small enough,

Qw(0)=N—ZQw(M)Z,0—e|A|~ (5.32)
u#0

This proves the lower bound in Lemma 5.3. We now prove Proposition 5.4.

Proof The upper bound (5.30) follows from (5.15), |A,| < golu| =2 (5.9) and the assumption
u>¢eyforue Py.
To prove the other bounds, we first sum over u € Py in (5.14) to have

A)?
A7 Y 0vw = IA Y R, (5.33)

uebPr uebPr

where we have bounded the factor pm. /ey in the error term by p3/4.
Let h(k) = /1 + 4go|k|~2 and we can rewrite A as
1 —h(k)

T (5.34)

P ok =

Recall for any continuous function F on R?, we have

LS rp=L Y F &y
i (p)—|A|Z (”H/Rz s P

pEA* pEA*

Thus we have

A)?
li A -1 .-3/2 (;0 u
Jim Ao 2 1= (phy)?

uepPr,
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(h(k) — 1)

= lim di* + o(A|7'3). (5.35)
p—0 (271')’; SLS‘HS”IZI 4h(k)

The last error comes from replacing the summation by integral.
Due to the choices of ¢, ., we can continue the computation as

. 1 (h(k) —1)? 3> o
1 SO = 13) + o2
»»o((zna ‘l;<m<w; ah (k) FOUAT
!
=338 00N+ 0(AIT). (5.36)

This proves (5.31) since L = p~23/24,

Similarly, for u € P;, we have

A)?
I A -1 _-3)2 (;0 u
Sm A0 2 T

uePy
h(k) — 1)?
< lim - Ldk3+0(|A|*1/3). (5.37)
=0 Q1) )yt cpyzoe Ah(K)
This proves (5.29) and concludes Proposition 5.4. O

As a corollary to the proof, we have the following estimates.

Corollary 5.1

32
lim lim [A|™'p™/2 A" 5.38
Jim lim |A]7!p (ZZ@) =32 (5.38)

uePy m=0

Proof From the previous proof, we only need to prove the tail terms vanishes. Recall
|pA,| <1 —const.e; < 1in(5.9). Thus we have

o0
1 1 A71 -3/2 )\‘{ 2m
Jlim Tim A D> (om)

ue Py, m=n+1
)‘u 2n+2
< lim lim [A]p —3/2<Z ('07)2)
n—00 p—0 = 1— (p)"u)
< lim H(Q2n)dk®> + O (|A|7'7?), (5.39)

=0 27)3 Jps

where

hk) — 1 1—h(k) \2n
sm = 80 Z(;)Hh(k))

By Lebesgue monotone convergence theorem, we have that H (2n) converges to zero. This
proves the corollary. O
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We note that (5.28) also shows that, for u € Py, Qy({u, m}) is exponentially small with
m,i.e.,

Qu ({u, m}) < (const. |&,| p*[u|~>)". (5.40)

Furthermore, using similar method, one can easily generalize this result to: for u, v € Py
andu+v#0

n

Qu({u, m}, {v,n}) < (const. |x,|p*e")" (const. |1, |p%e;%)", (5.41)
which implies, for u, v € Py and u + v # 0, the following inequality:
Qy(u,v) <const. |A,A,| ,048;14. (5.42)
5.2 Proof of Lemma 5.3: Upper Bound

Proposition 5.4 states that the density of particles with momenta in P; and Py are much
smaller than p*?2. And it implies an upper bound on the density of particles with momenta
in P. We now prove a matching lower bound

Y 0w = (#gi/z - 8),03/21\ (5.43)

uepPr,

for p small enough. Since the total number of particles is fixed, this will provide a upper
bound on the number of particles in the condensate and hence proves the upper bound part
of Lemma 5.3.

We start with the following lemma, which bounds the average number of particles in the
condensate under the condition that there are at most k particles with momentum u.

Proposition 5.5 For u € P; and for any k fixed with 0 < k < m,. (m,. defined in (3.8)), we
have, for p small enough,

S QuOlfu, i) Qu ({u, i})

ST Ouln. i) > N — const. Np'*m,. (5.44)
i=0 Lw il 1

Proof By (5.22), the contribution of o € M to Qg ({u,m}) for 1 <m < m, is of lower
order when compared with the contribution of a € M;,. The ratio of the contributions from
o € M} between Qg ({u, m}) and Qy ({u, m — 1}) is estimated in (5.26). Together with the
upper bound on |}, | in (5.9) and the choices of ¢, ¢y, we have for p small enough,

Q\l/({us m}) < (pZ)Lﬁ)(l + const. M) < (] — const. <5L — n:,p)) < 1. (545)

Quv({u,m—1}) — Ex H

Hence Qy ({u, m}) is monotonic decrease in m. We thus have for 0 < k < m,,

me

- k1 k1
> 0ulu,ih = prr ;Q\“({”””:mCH’ (5.46)

i=0

where the last identity is the normalization of the state \W.
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By definition of Qy (0|{u,i}) and (5.32), we have

> 04 Ol{u. i) Qu({u.i}) = Qu(0) = N — const. Np'/2.

i=0

On the other hand, for any m, Qv (0|{u, m}) < N. Hence, the numerator on the left side of
(5.44) can be bounded by:

k
> 0uOl{u, i) Qu{u, i})

i=0
=" 0uOl{u. iPQu({u.ih) = Y QuOl{u.i})Qu({u.i})
i=0 i=k+1

me

> N —const. N2 = N Z Ov{u,i})
i=k+1

k
=N Qu({u,i}) — const. Np'/, (5.47)

i=0
where we have used >/, Qw({u, i}) = 1 in the last identity. Finally, we divide (5.47) by
Zf:o Q¢ ({u,i}) and use (5.46) to conclude (5.44). O

Return to the proof of (5.43) for u € P,. Since A is a one to one map (not necessarily
surjective), we have

me me—1
Y 0u(u.ih= D 1A BL. (5.48)
i=1 Bu)=0

From (5.5) and (5.6), the right hand side is bounded below by

me—1

RIAP Y (B0 - BO)IFBIP. (5.49)
B(u)=0

By Jensen’s inequality and 8(0) < N, it is bounded below by

me—1 0 2\ 2 me—1
kilAH((Z’f‘(“;f”fg( )'f(ﬂz)' ) —N) > IFBIr (5.50)
Yo (B o

By definition,
S hioso BOLSBF 3" 0w (Olfu, i) Qu (G, 7))
Y L I F (B Yt Quu, i)

The term on the right hand side can be estimated by Proposition 5.5. Combining all estimates
up to now and we obtain

(5.51)

me me—1
D 0w i) = ((p—p0)* Y Qulfu,i)). (5.52)
i=1 i=0
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Finally, using (5.46), we have

> 0uu.ih) = ((p — p*)r)? (1 -

i=1

o ) (5.53)

We can generalize this result as follows. For m > 1, we first iterate the argument in
proving (5.48) and (5.49) to have

me—m me

WAL (BO) = 2m)" [ F (B <D Qu{u, i}). (5.54)

Bu)=0 i=m

Again, using Jensen’s inequality, Proposition 5.5, and (5.46), we have

iQw({u,i}z((p—ps/“)ku)z’"(l— ” > (5.55)
m.+1

i=m

So with the fact m. = p™", Qy(u) can be bounded as follows,

Qv =303 0utuih = Yoo - o (1= 1)

m=1i=m m=1

Jme+1
=(1=p"%) Y (k). (5.56)

i=1

Now the summation over u € P, was carried out in Corollary 5.38 and we have proved
(5.43). Since the total number of particle is N, the bounds on Qy(0) follows from (5.43)
and Proposition 5.4. This concludes Lemma 5.3.

The previous method can be applied to yield the following estimates which will be useful
later on.

Lemma 5.5 Foru € Py, and p sufficiently small, the following two bounds hold:

i pzkz »
mQy({u,m}) < ———=p"", (5.57)
m=m¢—1 - p )"H

2

)\’2
3 |f(a)|201(0)201(u)2N21fﬁ(1—Zp”/z—(pku)zﬁ). (5.58)

a(u)<me—2

Proof Because Qy ({u, m}) is monotonic decrease in m, we have

me

> mQu((u.m)) < o

me

st const.

=Y mQu({u,m}) =

m=1

Qu(u). (5.59)
m=m¢—1 Me

Together with the upper bound (5.13) on Qy (1), we have proved (5.57).
To prove (5.58), we follow the argument in (5.54) to have, form <m, — 2,

me—m—2 me—2
WAL (BO) = 2my P F(BIP < D Qu0,0l{u, i) Qu (fu, i)).
Bu)=0 i=m
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Again, using Jensen’s inequality, Proposition 5.5 and (5.46), we have

me—2me—2

DT 1f@Pa e =Y > 040, 0l{u.i}) Quu.i})

a(u)<me—2 m=0 i=m
N
= (1-2p"%) ) (ph)*' N2, (5.60)
i=1
This implies (5.58). O

Lemma 5.3 can be extended to the following estimate:
Lemma 5.6 With the assumptions in Lemma 5.3, Qy (0, 0) satisfies the estimate
(Ap—c)” < Qu(0,0) < (Ape)*. (5.61)
Proof By Jensen’s inequality and Lemma 5.3, we have the lower bound
04(0,0) = [Qu(0)] = (Ap_,)*.

For the upper bound, we start with

Qu(0,0)=N>—2N > Qu)+ Y Qu(u,v)

u#0 u,v#0

< (QuO0)’+ " Qulu.v). (5.62)

u,v#0

Since the number of particles with momentum u € Py is at most m.,

Y Qulw,v) < (Z m) (Z Qw(v)). (5.63)

ue Py, v#0 uePy, v#£0

By definition of P;, we have ZuePL me = mcnz3p3/2A. The last factor in (5.63) can be
estimated by Proposition 5.4. Thus we have

Y Qulu,v)=0(p’|AP). (5.64)

uePr ,v#0

For the terms ), p, up,, »-0- the upper bound on the total number of particles in P; and Py
in Proposition 5.4 yields that

Y. Quw,v) < Y QuN=o0(p"?|AP). (5.65)

uePiUPy , v#0 uePyUPy

Inserting (5.64), (5.65) into (5.62) and using the upper bound in Lemma 5.3, we obtain the
upper bound on Qy (0, 0). O
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6 Estimates on Kinetic Energy

In this section, we will prove the kinetic energy estimate Lemma 4.1. This lemma follows
immediately from summing the estimates ((6.2)—(6.4)) of the next lemma.

Lemma 6.1 In the limit p — 0, Qy (u, v) can be bounded above by

;gnao<p-5/2|A|—2 > Qul, v)) <0. (6.1)

u,v#0

Furthermore, Y u> Qy (1) can be bounded above as follows

T%(P_S/zll\rl Y W (Quw) - (poxu)2)> <0, (6.2)

= uePy

T — — 8 5/2

élgg)(p TAT ;uz(Qw(u)—(powu)2)> <=5 38 (6.3)
uekly

=5 4032

— (P 2 2 80 52,2

I — A <0. 6.4

plgg)( a ZPu (Qw(u) <p0+ 32 P ) >>_ (6.4)

Proof The bound (6.1) was proved in (5.64) and (5.65). We now prove (6.2) concerning
ueP;.
The upper bound of Qy (u) in (5.13) can be rewritten as

(or)*
1— (pr)?

Recall pg = p(1+ O(/p)) and the bounds on A in (5.9). Since p'/* <« |u| < 1 whenu € Py,
see Definition 3.1, the error term of the last bound can be estimated by

Oy () < (pr)* + (6.5)

— )
lim [A|7 o5/ 2_(Ph)” =0. .
Tim A0 2. iy =" (6.6)
u:p! 2 lul<1
This proves (6.2).

We now prove (6.3) concerning u € P, . Following the strategy of the previous argument,
we first use 0 > 1 — (pgA, ) > const. &, in (5.9) and (5.10) to rewrite the upper bound of
Qy(u)in (5.14) as

(p)‘u)z pnc
< —————— +const. .
Qv =t T e

The error terms are negligible in the sense that

me
Y w2 P — o(p*2A).
EHEL

6.7)

uePy,

Since w, = g, |u|™2, po — p = O(p>/?) and |g, — go| < const. |u|, we have

2
tim > uz((%) - (powuf)p—s/zmr‘ =0. (6:8)

uepPr
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Summarize what we have proved, we have the following inequality:

im Y~ W (Qu) — (powa))p A

uePy,

(Ph)? 080 \"\ s .
<fim ) u (1_ o - <M_;> )p NS (6.9)

uePy,

Let u = /pk and h(k) = /14 4golk|~? as in (5.34). Then the right hand side of (6.9) is
estimated as
1 2<1+2go|k|2 14 2(golkI 7’
(2n)? ep <lkl<n 2h(k) 2

)dk3 +O(A|"'3).

Direct calculation yields that

1 1+2g0lk1 2 1+ 2(golkl™)? 8
/ k2< +2g0lkI 7 142(golkI™) )dk3=——gg/2- (6.10)
keR3

(2n)? 2h(k) 2 572

Inserting this result into (6.9), we obtain the desired result (6.3).

Finally, we prove (6.4) concerning u € Py. Recall the bound (5.28) on the ratio of
Qu({u,m}))/Qy{u, m —1}). Since |A,| < golu|™> (5.9) and u € Py, the factor on the right
hand side of (5.28) can be bounded by p3/2. Thus we have

Qw(u)—ZmQ»p(u m}) <Y Qul{u,mhH(1 + 0 (™). 6.11)
m=>1

We now repeat the argument from (5.27) to (5.28) but refine the proof by using Proposi-
tion 5.4. Hence for any u € Py, we have

BO?, 4BO) B®) >
ZQW({u,me;( ap Zp AT Ay M- u+v|)|f<ﬂ>|

m>1

< [AI7250Qu(0,0)+ Y plAIT (40w () [hd i) . (6.12)

vePy,

By mean value theorem and A, = —g|k|™2 for k € Py, we have that 3z € R® : |ii —u| < v
S.t.

08
[A_ytv — A_y| < const. | | —
ou

a4 |gﬁ|ﬁ*3> [v]. (6.13)

From the estimates (5.9) on A, and u ~ i, we obtain:

98 _ _
|)‘u||)\—u+v_)\—u| = const. <‘Wgu u 4+|gﬁ||gu|u 5)'”'
< const. [u| %e; G (u)|v], (6.14)

where by Schwarz inequality, we have:

agu’ :
ou’

Gu)= max [

Wil —ul<np ' p1/?

+ Igu/lz}. (6.15)

@ Springer



476 H.-T. Yau, J. Yin

We note that it is easy to check Y, p, G(u)/A < oco. Together with the results on the total
number of P, particles in (5.3), we obtain that, for p small enough and u € Py, the last term
in (6.12) is bounded above by

2 sp 4g3/2 . const. p3
AP 5t |+ —5—GCw). (6.16)

2
3n U=EyML

The Q, (0, 0) in the last second term of (6.12) is bounded by Lemma 5.6. Inserting (6.16)
and (6.12) into (6.11) and using )\5 = wi for u € Py, we obtain that,

—5/2

_ 4032
lim > ”2<Qw(u) - (;Oowu)z(l + [ e }pé“)) A= e

uePy

This proves (6.4). O

7 Estimates on Pair Interaction Energies
7.1 Proof of Lemma 4.2

First, with the fact a’ala,a, < (ala,)* and 0 < |V, | < V, for any u, we can bound Hy, as
follows

Hg < VOA_1 Za;auazav +A7! Z Vu_vazauazav

u,v u#v

< VoNp + VoA™Y alala,a, =2VoNp — VoA™Y (aja,)’. (7.1)
u#v u

Therefore we can bound the expectation value (Hy;):

(Hs1)w <2VoNp — VoA™' >~ Qu(u,u) <2VoNp — VoA~ 04 (0,0).  (7.2)

u

By the lower bounds of Qy (0, 0) in Lemma 5.6 and the definition of p, in (3.14), we have
proved Lemma 4.2.

7.2 Proof of Lemma 4.3
We start the proof with the following identity for (W|a] a} a;a.,|¥).
Lemma 7.1 For any fixed u; 234 € A* and a € M, define T () to be the state
T (@) = Ca; af aa,,le), (7.3)

where C is the positive normalization constant when |T («)) # 0. Then we have

(Wla) af a,a,|V) = Zf(ot)f(T(oe))\/(ala:f4a;3au2al,l la, abyaan, o). (7.4)
aeM
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The map T depends on u; 234 and in principle it has to carry them as subscripts. We
omit these subscripts since it will be clear from the context what they are.

Proof For any u; 534 € A* fixed, by definition of W, we have

(Wla af anan W)=Y f@ fB)Bla] al,ana,la). (1.5)

o,feM

By definition of M, we have

(Bla} af awaula) #0 = B=T(). (7.6)
Since |T («)) is normalized, the identity in Lemma 7.1 is obvious. O
Lemma 4.3 follows from the following lemma and 1, = —w, for u € Py U P;. Notice

that the factor 2 in the estimate of Lemma 4.3 is due to the complex conjugate in the defini-
tion of Hg,. Similar factor also appears in Lemma 4.5.

Lemma 7.2
lim Z (VA ala’ ,a0a0) — py Vir)p > *IAI 7 =0, (1.7)
mL',pueP]UPH
_ Vog?
}}(H}) Z (VulAI'ala’ jagao) + p3 Vaw ) p 2P |AI7! < ﬂ—g (7.8)

uePr

Proof We first prove (7.7) concerning with u € P; U Py. By Lemma 7.1, we have

(VoA aja" aga0) = VAT Y fle) f(A)

a:eeM, AlaeM

x v/ (@(0)% — a(0)) (e (u) + 1) (a(—u) + 1). (7.9)

The case that « € M and A“a ¢ M can only happen when «(0) = 0 or 1 and thus has no
contribution. From the relation between f(«) and f(A"«) in (5.4), we have

(7.9) =MVl A2 Y 1 (@) Pe@)(@(0) — D/ (@@) + Dia(-u) + 1. (7.10)

aeM

By the Schwarz inequality, we have

> a0)(@(0) = D(v (@) + Die(—u) + 1) = 1)| f (@)

< N?

ZMU(Q)P =N2Qy (). (7.11)

2

o

Inserting (7.11) into (7.10) and summing over u € P; U Py of (7.10), we obtain

D (VulAlT'afa’ ,a0as) = Vidu (Qu (0, 0) — Qu(0)))

uePjUPy
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<const.p’|Al D Qulw). (7.12)

uePjUPy

From the upper bound of ) Qu(u) in (5.29), the right hand side of above inequality is
bounded by (o(p°/?A)). By the bounds on Qy (0, 0) in Lemma 5.6, we have proved (7.7).

To prove (7.8) concerning u € P;, we note that (7.9) still holds, but A« ¢ M when
a*(u) = m.. Therefore, for u € P, (7.9) is equal to

VAT Y f@) f(A )y ©0)@©0) — D) + Da(—u) + 1.

a:aeM,o*(u)<me

We can express f(A"«) in terms of f(«); in both cases: o € M} or « € M, we have the

following identity:

F@) f(A @)y (a(u) + D) (a(—u) + 1)
=l @) PIAI 'V @(0) (@(0) — ) (a*(u) + 1). (7.13)

Hence, foru € Py,

T9= > WVUIAITf@Pa0)(@O0) - D@ @)+ 1). (7.14)

a:aeM,a*(u)<me

Wenote A, <Oand V, =V > 0,foru € P,.Forany o € M, o*(u) —a(u) < 1 by definition.
Hence we can replace the summation o* (1) < m, by @(#) < m. — 2 to have an upper bound.
Summing over u € Py of (7.14), we have

<Z VulAl_la;aiuaoao>

uePy,

<3 Y MVAAPIf @ Pe0)@(0) — Da)

uePr au)<me—2

+3 Y VAP @Pa0)@©) - 1. (7.15)

uePr a(u)ysme—2

The last term is equal to

3 M Vul AI2(Qu(0.0) — Qu (0))

uePr

me

=D D MValAITA(Qu (O, 0lu, i) Qu (u, i)). (7.16)

uePy i=me—1

Since Qy (0, 0u, i) < N2, the last term in (7.16) is bounded from above by

me

Z Z const. |A,p> QO (u, )| < 0(p>*A), (7.17)

uePy i=me—1

where we have used (5.45). For the first term of (7.16), we can bound it by using Lemma 5.6.
We now use (5.58) to estimate the first term on the right hand side of (7.15). Combining these
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results, we have

<Z VulAl 'ajal aoao> > hVup (p W’ T (=203 — (pha)Te)

T (pr )2
uePy, uepy ( )"u)
+ D MaVupg +0(p°* A). (7.18)
uepPr

Since |A,p| <1 and |V,| <V, we have

(p u)? (pru)?
> haValo? =iy <>V pm < const. p*/?A. (7.19)

uePr uebPr

By (5.39), we have

(pra)’ o
D aValo? {5 (R < 00, (7.20)

uePy,

Inserting (7.19)—(7.20) into (7.18), we have

> (VilAlM aja’ ,a0a0) + wi Vap))

uebPr

)\’3 2
< 2 CukwVaps + 3 V' 7 Dz + 007 A). (7.21)

uePy, uePy,

Since |g, — gol + |V, — Vo| < const. |u|, we can replace w, and V, by go|u|? and Vj in last
inequality so that the rhs of (7.21) is bounded by

2
Vorg Y O+ golul ™) + Vop? Z s +olp I2p)
uePr uebPyp /0
2 2 AP’ 5/2
J— — u
=Vorg Y (xu + golu| 2 + m) +0(p % A). (7.22)
uePy, u
Let u = ,/pk. We have
)\3[02 |
u -1/2 —1

lim > (Au + golul sz)p Al

uePL

1 1
= lim —— g0|k|—2(1 - —)dk3
p=0 21)* Jep <iri<n! V1 +4golk|2

— 72 (7.23)

So the leading term of right hand side of (7.21) is equal to Vogg/zn_z(ps/zA). This com-
pletes the proof for (7.8). a
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7.3 Proof of Lemma 4.4

Define P (u, v) by

Puv)= Y FIAD) FAYY G @ + D (—u) + Dy ) + Dy (—v) + .

yeM
(7.24)
Recall f(e) =0 when |a) =0ora ¢ M.
Lemma 7.3 Letu,ve A*,u#vandu,v#0.
If one of u and v € Py U Py, we have the following identity.
(‘-Il|aua_uav |V = P(u,v). (7.25)
Ifu,v € Py, we have
(Wlala® ,a,a_,|W) — P(u,v)| <const. p* [A,A,|. (7.26)

Proof We first prove (7.25) and assume without loss of generality that v € P, U P;. Using

Lemma 7.1, we rewrite (aua,ua a_,)y as

(@fa’ ,ava )y =Y f@) f(T @) @ + D)+ De@a(—v).  (7.27)

aeM

Here |T (x)) =C a;aiuava_vla) and C is positive normalization constant. Since v € P, U P;
and @ (v) > 0, ¢(—v) > 0, by definition of M there exists unique y € M such that

Ay =a. (7.28)
Therefore, with |T(«)) = Cala’ ,aa_,|a), we have
T(x)=A"y. (7.29)
Furthermore, by (7.28), we have
yw)=aw) and y@w)=al)+1. (7.30)

Inserting (7.28), (7.29) and (7.30) into (7.27), we have proved (7.25).
To prove (7.26), we define N, as the following set:

Ny={ae MVy e M, A’y #a}. (7.31)

Following the previous argument, we have

laja' ava_ )y — P, v)[ < > |f@f(B)(Blaja’ awa |a)|. (7.32)

aeNy,BENy

The right hand side can be divided into two cases:

> | £ (@) f(B)(Blaja’ ava_,|e)|

a€Ny,BEN,. B(u)(—u)za(v)a(—v)

@ Springer



The Second Order Upper Bound for the Ground Energy of a Bose Gas 481

+ > | (@) f(B)Blaja’ ,avayla)|. (7.33)

a€Ny,BeEN, ,a(v)a(—v)>p(u)B(—u)

By definition of f, if (,B|au Liava_y|a) #0,wehave | f(B)| = |/ o f()], B(u) =a(u) + 1
and f(—u) = «(—u) + 1. Denote by N, , C N, the set

Nyu={a € Ny:(a(u) + Dia(—u) + 1) <a@)a(-v)}. (7.34)

Hence we can bound (7.33) by

Y f@fB)Blaja’ avale)

a€Ny,BEN,

= fBPB@(—w). (135

u

2

BENUw

a€Ny y

Now we bound Zaer | f(@)|?a()a(—v). If @ € N, and a(v)a(—v) > 0, then with
Proposition 5.3, there exist ', v' € Py with &’ € M}, such that

a=A" vy o (7.36)
If ' ¢ N, then there exists ¥’ s.t. A"y’ = «’. Hence
AU(AU"u—%y/)=a = O[¢Nv

and we have a contradiction. Hence we have o’ € N, and o/(—v) > 0. Again by Proposi-
tion 5.3, there exist &”, v” € P, such that «” € M),

o = AT (1.37)

Combining (7.36) and (7.37) and using (5.7), we express f(«) in terms of f(a”), a”(V'),
a”(v") and «”(0) and A’s. By definition of M, «” (V) < m, for any v € P, and we obtain

|f (@) < const. p°mZ|A|7°A7 [A—yivrhosur| £ (). (7.38)
By (5.11) and —v 4+ v', v + v” € Py, we have
|f (@)]* < const. p”m2A2e;* f ()2 (7.39)

c v

Summing over v/, v” € P and @” € M, we obtain

Z | f (@)]* < const. p>n; *m2A2e* < (p7hy)>. (7.40)
a €Ny, a(v)+a(—v)>2

Similarly, one can prove that

> |f @) < (p*h)". (7.41)

aeNy,a(v)+a(—v)>m
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Hence, we can obtain

2

a€Ny y

|f@Pa@a(=v) < Y |24 f@)Pa@)a(=v) < 20" (LAl

aeNy

Au Au
Ay A

v

Inserting this result into (7.35) and using the symmetry, we obtain

> f@fB)Blaja’,aala)| < const. p* Al (7.42)
aeNy,BeENy
This completes the proof. O

Using this lemma, we can estimate the term (a+a+ aya_,) as follows.

ut—u
Lemma 7.4 Foru,v e P; U Py,

wa aa g, 2000 QW(O)‘
AP

u-"—u

< huhol 02 ((Qu(u, v) + Qu (U, —v)) /2 + Qu(u) + Qu(v) +const. p*).  (7.43)

FOVMEPL,UEP]UPH,

Qv(0,0) — Q4 (0) ptis )‘

T,1
(auafuavaﬂ) - )w)\v< |A|2 1— )02}»3

= Ay pz((Qw(u, v) + Qu(u, —v)) /2+2Qy(v)

4:02)‘5 /2 2 e
m(ﬂ + (o) )>~ (7.44)
Foru,v e P;
(@'at ava_,) — iy Qv (0,0) — 0y (0)
u“—u |A|2
< [Aurol P2 (Qu(u, v) +2Q04 ) +2Q4 (V) +3). (7.45)

We note that there is no absolute value on the left hand side of the inequality when u, v € Py.

Proof We first prove (7.43) concerning u, v € P; U Py. By Lemma 7.3, we have
laja®,aya_,) — P(u,v)| < const. p* [A, A, (7.46)
where P (u, v) is defined in (7.24). By the property of f in (5.4), we can rewrite P (u, v) as

2 7(0)* = y(0)

Mol )P

yeM, AlyeM, A'yeM

X v/ (y @)+ Dy (=) + Dy @) + Dy (—v) + 1. (7.47)
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The situation that y € M and A*®y ¢ M can only happen when y (0) = 1 or 0. But in this
case, y(0)> — y(0) = 0 and the term vanishes. Hence the summation of y in (7.47) can be

replaced by ZV <y~ Therefore, for u, v € P; U Py, we have

Qv(0,0) — Quw(0)
|A2

,7(0)?
|A?

‘P(ua v) - )“u)"v

<D Il LF )

yeM

X V(@) + Dy (=) + Dy ) + Dy (—v) + 1) — 1. (7.48)

From y(0) < N and the Schwarz inequality, the rhs is bounded by

3 If(y)lzpz[<w " 1) (W + 1) - 1}. (7.49)

yYeM

By symmetry, we have Qg (1) = Qy(—u) and Qy(u, v) = Qg (—u, —v). So we have

1
(7.49) < [Auhol /02<§ (Qu(u,v) + Qu(u, —v)) + Qu(u) + Q\u(v))- (7.50)

Together with (7.46), we have proved (7.43).
We now prove (7.44) concerning u € P, v € P; U Py. Following arguments in the pre-
vious paragraph and using (5.5) and (5.6), we can rewrite P (u, v) as

2,70 =y (0)

> Ml fO) e
yeM, AlyeM
/() + D(y* (=) + Dy ) + Dy (—v) + 1. (7.51)

Notice that no matter we use (5.5) or (5.6), the final result is the same. For y € M with
y(0) > 2, the case A"y ¢ M can only happen when y*(u) = m.. Hence, the summation of
y in (7.51) can be replaced by Zy*(u)#m(. Since y*(u) = y*(—u), foru e Pp,ve P;U Py
we have

270>~y (0)

AR YW+ DY@+ Dy (o) +1). (752

Pu,v) =Y kol f()]

y*wF#me

Since y(0) < N, we have

— 2
‘P(u, v) —AMAUM — ZMMI]‘(WIZM *
14

A ap 7 (“)‘

= Y WAIFOPRG @+ Do @+ Do+ D -1

y*u)#me

+ ) Pkl IF P (v @) + 1) (7.53)

y*w)y=mc
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We can replace ZV* (w#m, 10 the first term of rhs by Zy <y to have an upper bound. Since

@+ D)+ - 1< [y() +y(=v)]/2 and y*(u) < y(u) + 1, we can bound
the right hand side of (7.53) by

1
Ilukulpz[E(Qw(u,v)JrQw(u,—v))+2Qw(v)+ 3 2|f(y)|2>/(u)}- (7.54)

yw)=me—1

The last term is bounded in (5.57), i.e.,

2 p*3’ 2
I e e (7.55)
— p2A
yu)yzme—1
The estimate (7.44) follows from last three inequalities and (7.51), provided that we can
establish the following estimate

2 )’(0)2 -y , :04)\3 /2 2 /e
—_— =—2L —J[140(" O((pAy ). (7.56
EV [f ()l e Y () (1_()0)\”)2)[ + 0"+ O0((pr,) V")) (7.56)

To prove this, we first divide the summation of y into y € M and y € M. For the case
y € M;, we have

(pr)?

— (1 2/3, 7.57
A=t TP 037

02— y(0
> 1Py w < 0vw < 7

yeM;

where we have used (5.14) in the last inequality. For the case y € M, using (5.22), we have

02— (0 c
Z |f(y)|2%y*(u) < const. pzi_"; Z Lf )Py (u)
yeM{ yeM;,

(phu)?
(1= (pr)?»’

wioo

=p (7.58)
This proves the upper bound part of (7.56). The lower bound follows from (5.58) since
yrw) =y ).

Finally, we prove (7.45) concerning u, v € Py. Similar to the previous argument, by (5.5)
and (5.6), we can rewrite P(u, v) as

27(0)* = y(0)

Ml F )P

yeM, AtyeM, AVyeM

XV  w) + Dy (=) + D) + D(y*(—v) + 1). (7.59)

Since A, A, > 0and y*(u) = y*(—u), we have foru, v € Py,

0,0) — Qu(0

Pt~ 2,0, 2D 2D 55020+ D)+ D - 1] (T.60)
IA] P

Using y* — y < 1, we have proved (7.45). O
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‘We now can now prove Lemma 4.4.

Proof Summing over u, v # 0 of (7.43), (7.44) and (7.45), we obtain that

VM—U
> A (alaa-) < A+ B+ 0 (7.61)
u, v£0

where

_ 2v0,00 ~ 0u (O Z |Vu7|;)\ )

[AJ?
u,v#0

Vi oA
B=2 Z |A|2)L“kv1—p2A2’

uePp,veP;UPy

1
|A|2< D Wl 02 Qu, )+ D A Viulp? Qu ()

u, v#0 uePyUPy ,v#0

+ ) 3Visullhdl P2 Qu@) + D+ Y const. p* 2| Vi |

u,vePy, u,vePjUPy

4)\12
+ ) akllVie A—W( "/2+(Aup)zm)). (7.62)
uePp,vePjUPy p
The error term 2 can be bounded by using the following facts, (1) |pA,| < 1,
@) 12202 Vuol < const. A, (3) Vil < Vo, (4) [hul < golu|™ for any u # 0 and
(5) 2w 12 Vi—vo| < const. VNES

_ const. (ZQ\P(” o)+ Z 0w ()pA + Z Qu)+1 o2

INER o2
u, v#0 uePjUPy u, vePy,
px e
+oH AP+ ) —WA@"/Z + Gup)™ )). (7.63)
uePr,

By (6.1) and (5.2), the first two terms on the right hand side are bounded by o(p>/?). Using
the trivial bound Qy(u) < m, for u € Py, the third term is also bounded by o(0?). By
(7.19) and (7.20), the last term is also o(0>/?). Hence the error terms are bounded by Q <
o(p?).

We now estimate A and B. Notice that (Qy (0, 0) — Qy (0))| A2 = p2 +0(p>/?). Hence
we shall replace this factor in A by ,og. Since A, = —w, for u € P; U Py, we have

Z Auhy = Z Wy Wy — 2 Z ()‘u + wu)wv + Z ()"u + wu)()w + wv)-

u,v#0 u,v#0 uePr,v#0 u,vePy,

We can now decompose A into
A=lw’VIlip5 + Ar + Az + Az +0(07?) (7.64)
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where

uePr,vePjUPy

Ay==2p5 Y.

uePr,vePp

||2

A |2 > G+ W) wy,

Ll v
A=) T Gutw) o+ w0,
u,vePy,
Since |w,p| < const. p|u| 2 < &%, we have A3 < 0(p>/?). We can also obtain the simple
estimate A, < 0(p°/?).
If we replace p? in B by p3, which is equal to p*> — O (p>/?), we have

Vico 5 pA
B+A=-2 ) AP AMWH + w, (7.65)

uePp,vePjUPy

Using |V,—, — V,| <const. [u| for u € P, and v € P; U Py, we can simplify B 4+ A; as

[IVw
B+A < ||A| I Z < Zkz ) +o(p™). (7.66)

Since |g, — go| < const. |u|, we have |w, — golu| 2| < const.p’l/zezl. Then we can

replace w, with go|u|~2 in (7.66). Setting u = p'/?k, we have, by definition of A,

A
li 172 Ay-1 u -2
lim(p'2A)7! 37 Tz ol

uePr

1 V1 +aglkl2—1 o/
S L (AT T s S0 (1.67)
873 Jiers V14 4glk|~2 2
Inserting this result into (7.66) and (7.64), we have proved (4.11). O

8 Proof of Lemma 4.5

In this section, we prove Lemma 4.5 concerning potential energy terms with one ay. Let
vj € A*and v; # 0 for j = 1,2, 3. Define Py . as the following subset of Py:

Hc={k € Py : k| <k} 8.1

The following lemma classify all possible scenarios of vy, v,, vs3. Through out this section,
we assume that v; 20 fori =1, 2, 3.

Lemma 8.1 Suppose B, € M and (a|a$azl Ay, Gy, | B) # 0. Then there are only three possi-
bilities:
1.

vieP,, wm,v3€Py., viELv; fori#j. (8.2)
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2.

vi€Py., veEP, vi€ePy. viFELv; fori#j;, or 2<3. (8.3)

U1€PL, v2€PL, U3€PL. (84)

Proof Since particles with momenta in P; are always created in pair, e.g., (#, —u), either
none of v;’s belongs to P; or two of them belong to P;. Thus we have:

v,neP = wvi=uv, or 2<«3, (8.5)

v,neP = vy=-—us. (8.6)

If two of v;’s are in P;, by the momentum conservation v; = v, + v3 the other one must be
equal to zero, which is a contradiction. Therefore

vi¢ P, forl<i<3. 8.7)

The restriction |v;| < k. follows from the construction of M. Therefore, we have
vie PLUPy,., forl<i<3. (8.8)
Since particles in Py . are always created in soft pair creations which generated two
particles in Py ., the number of particles in Py . is even. So either none of v;’s are in Py .

or two of them are in Py .. Together with (8.8), and momentum conservation, we prove the
lemma. O

For fixed vy, vy, v3, define

Fay= > le@)—a(=v)l. (8.9)

iw;ePr,i=1,2,3
Lemma 8.2 Forany o, B e M if(ozlagazl Ay, Gy | B) # 0 and v; # Lv;, we have:
Fl@)+FB)=#i=1,2,3:v;€ P.}. (8.10)

Furthermore, the ratio between f(a) and f(B) is bounded as follows.

p%x/ﬁm)_mj)g FB) Ao, ng—&\/ﬁF(Q)_F(ﬁ). ®.11)
@)/ Ay, dpya(0)/ A

Proof Since v; # %v;, for each i fixed, if a € Mgi ,then 8 € Mjl_ and vice verse. This proves
(8.10).

Recall the definition of f in (3.18). Then one can check the ratio involving f(8)/f («)
in (8.11) depends only on the last factor

I1 NP YINEE

uePp,a*(u)—a(u)=1
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We now use (5.10) to bound X in this expression. Since F'(«) counts how many times this
factor appears, this proves (8.11). O

Using the definitions of 1, and m,, the bound «(0)/A < p and lemma 7.1, we have
|f (@) f(B)alaja) av,ay,|B)]

A

UQA‘U:‘,

Ay,

<N TP pm Van @) + Di@ws) + DIf@]? (8.12)

and

| £ (@) f(B)atlagal av,au|B)|

F(B)—F()+1 -1
<VN P I Ja o~V (B ) + DB B f (B (8.13)
Lemma 4.5 follows from summing the three inequalities of the following lemma.

Lemma 8.3 In the limit k. — o0, p — 0, we have

3/2
~2,-5/2 &o

11m|A| / Z aoa avzau3):—2||Vw||1§, (3.14)
(8.2)

Fr 2 - ¥

lim [A|Z07%2 ) Vi (agal avyans)| =0, (8.15)
(8.3)

T -2 _-5/2 i

fim [A|%p /(8Z®|vv2<a0a;av2a,}3>|=o. (8.16)

Proof We first prove (8.14) concerning (8.2), which implies that F(«) + F(8) = 1. By the
bounds on A, in (5.10) and o*(u) < m, for u € P, we have, for F(8) =0 the following
slightly modified version of (8.13)

|f (@) f(B)ll{laja) av,an|B)| pTp AV BB F B (8.17)

Here we replaced p~'/?° in (8.13) by p~'/'% to accommodate small errors. Summing over 8
with F(8) =0, we have

3 FB f@lelajal ananlB)l < o7V A A Qun v, (8.18)
F(B)=0

Using the bound (5.42) on Qy (u, v) and |A,| < golu|~2, we obtain that (8.18) = o(p?).
Since F(a) + F(B) = 1, the other case is F(«) = 0. Hence we have

(agazlavzam) =A1+ A+ 0(,03/2)» (8.19)
A=) Va@a@) f@fB),

F(a)=0
A=Y Va@a@) (V) + D)+ D - 1) /@ @).

F(a)=0
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By the estimate (8.11) and the Schwarz inequality |2(/(a + D(b+ 1) — 1)| <a + b, we
have

dg) = o 3 LD W) e

F(a=0) 2
< 0" (Qu (W) + Qu(v3) < 0(p?), (8.20)

where we have used the bounds on A’s and Qy (1) for u € Py.
By the property (5.7) for f, we have

A1 =2k, Y a@a)|AlT f @), (8.21)

F(a)=0

‘We notice

> a@a@)|f @ =QuO,v)IAI™ = Y a@a@)IAlT [ f@.  (8.22)

F(@)=0 weM,

The absolute value of the second term is less than pm, ZaeMﬁl | f(@)|*. By (5.23), it is
less than o7/, Then with |, Aoy hy | < 0(8;12), we obtain

(aday av,an) = 2y/kh, Qu 0, v)IAI™ +0(p¥?). (8.23)
Recall A, = —w, for u € P; U Py and w, = w_, due to our assumption on V. Since

vy < P~ /p and v; = —v3 + vy and v; € Py, we can check that

Ay — Ao | <07, (8.24)

v
Inserting this in (8.23), we arrive at
(agal, duyau,) = 200y Qu (0, VDA™ +0(0”%). (8.25)

In the limit k. — oo, p — 0, we have

A2 ) (Viaja) anan) =—[Vwli A2 ) Qu(0,v) +0(p°?).  (8.26)

viePL vePy vieP,

‘We note

IAI72 D Quw(0,v) =plAIT' Qu(O) = A2 Qu(0,0) = [AI> D" Qu(0,u). (827)

viePL ueP;UPy

The last term is less than N|A |2 ZuePIUPH Qu(u) < 0(p*’?) by Theorem 5.1. Together
with Lemmas 5.6, 5.3 on Qy (0, 0) and Qy(0), we can compute the first two terms, i.e.,

A2 )~ Qw0 1) = polp — po) +0(0™). (8.28)

viePy

This yields (8.14).
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We next prove (8.15) concerning (8.3). Without loss of generality we assume that
vi3€ Py, and vy € Pp. (8.29)

Following similar arguments in the previous proof, i.e., using Lemma 7.1, (8.12) or (8.13)
and the bounds on A,’s, we have

(e ana)l < Y o7 Ja@(@s) + DIrg 1 @)

F(a)=0

+ D P I BE)BED+DIAJIFBLR (830
F(p)=0

For the upper bound, we can replace ) Fa)=0 DY > ey - Using the upper bounds (5.15) and
(5.42) on Qy () and Qy (u, v) for u, v € Py, we obtain I(aSaII ay,a,,)| < const. p>/?. This
proves (8.15).

We now prove (8.16) concerning v; € Py, satisfying F () + F(B) = 3. It is easy to prove
that the contribution from the special cases, v; = —v; (or v3) or v, = v3, is negligible,

@ > WVylaal anan) oA =0. (8.31)

special cases

So from now on we assume that v; # £v; fori # j. As before, we rewrite (aga,f |Gy dvy) DY
using Lemma 7.1 and (8.12) or (8.13). Together with the bounds on A,’s and «(v;) < m,,
we have

1 L _1
lapal ana)l < Y N-'p 0| f@P+ Y p 0|f(@)

F(a)=0 F(a)=1
1 1
+ Y NTpOIFBP+ Y o OB (832)
F()=0 F(B)=1

By symmetry, we only need to estimate the first two terms on the rhs The first term is less

than N~! ,o_lLO . For the second term, we note F'(«) = 1 implies that there exists i, | <i <3
such that o € M. By (5.23), we have

> @ = (8.33)
Fla)=I
This implies |(aja! (G, y3)| < p'/ and (8.16), which complete the proof. O

9 Interaction Energy with Four Nonzero Momenta: The Classification

In the next three sections, we will prove Lemma 4.6 involving interaction energy without
ap. We will show that the only contribution to the accuracy we need comes from four high
momentum particles, to be computed in next section. In this section, we start the procedure
of identifying the error terms.

For «, B € M, we have the following lemma, similar to Lemma 8.1 and Lemma 8.2.
Since it can be proved by same method, we will only state the result.
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Lemma 9.1 Suppose v; # 0,1 <i <4 and v, + vo # 0, vy # v3 or vy If

(oz|a$1 azzau3av4 |B) # 0 for some o, B € M, then there are exactly four cases:

1. All of v; € P for 1 <i <4.

2. v, € Pp, U3, V4 € PH,c-

3. One of vy, vy is in Py and the other is in Py .; one of vs3, v4 is in Pp, and the other is in
PH,L'-

4. All of v € Py for1 <i <4.

Ifvi # %vj, for 1 <i, j <4, we have

@)— Avi Ay - oa)—
P yNTOTO S B o Ay < oSN ©.1)
S (@) /A3,

| @) f (B){elal, @ avyan,|B)]

W-F(B) 1 | Ak,
= VN R [ faunatu) (@) + D) F DIfF@F 02)

v U2

and

|f (@) f(B)elal af avsan,] B)]

—F@) =1 Ay Ay
<N 5% SV B) + DB + DEBWIS (B 93)

Proposition 9.1 Foru € P;, and v € Py ., we have the following inequality

3 @I f @2 < [1]0* . 9.4)

aeMf

Proof By definition of M (3.9), for any o € M{, there exist § € M, and k such that
A“*B =a and +k 4+ u/2 € Py .. Clearly, for any v € Py we have a(v) < 8(v) + 1 and
the case we need the constant 1 occurs only when v =k +u/2 or v = —k + u/2. Hence we
can bound the left hand side of (9.4) by

DT BWIFABI+Y Y AR ©.5)

B kixk+u/2ePy . B kitk+u/2=v
Recall (5.7) implies that
|FCA B < | F B pmel A7 [irupph—ktusal- (9.6)

By the bound (5.11) on A, we obtain that

oM, -
09 =3 pOIF B [ 3 |xk+u/zx_k+u/z|] 1l AL
B +k+u/2€ Py
< Qu()pmeer 'k} + Aol 1A' 9.7
Using Proposition 5.4, we have proved (9.4). a
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Lemma 9.2 We have the following estimates on the interaction energies:

Tmp= PN D0 Vi la]alanan)e] =0, 9.8)

v],V2,V3,04€PL,

T 5720 A =2 it B
’}llcr’r:? p IA' Z I v"’l v3 <a1,1 avzav3av4>\l’| =0, (99)
v1+v27#0,v1,02€ P, v3,v4€ Py

T S5/20 A 12 ¥ _
Tim p=*/2|A| Yo Vinla) alanay,)e] =0. (9.10)
v1,v3€P, 10, 14€Py
In other words, the contributions from case 1, 2 and 3 in Lemma 9.1 are negligible for our
purpose.

Proof We first prove the (9.8) concerning v; € P;. By Lemma 7.1, we have

(] af avan)ul < Y1 f (@) f (T @)lm?. ©.11)

Using the Schwarz inequality, we have |(av1 a;fzaU ay)wl| < mf The summation over the v;

with v; = Zv; for some 1 <i < j <4 is negligible in the sense that

A7 > a! af avau)e] < 0(0?). 9.12)

Ul.vz,v3,v4EPL,Ui:ivj

From now on, we assume that v; # +v; forany 1 <i < j <4.
Using (9.2), (9.3) and the bounds (5.10) on A, we have

-1
a],af,avan)ul < D pO N7 f(@)’]

F(o)<l
—1 —1
+ Y pOIf@?+ Y pONTLBI
F(a)=2 F(B)=I1

By (5.24), we have |(af a] av,a,,)w| < p°°. Together with (9.12) and A = p=>/%, we can
sum over v; to have

Al DS () alanan)e < o(0™). (9.13)

v],V2,V3,04€ P,

‘We now prove (9.9) concerning v, » € P and vs 4 € Py,. As before, by (9.2), (9.3), (5.10)
and (5.11), we have

la} @} auan)el = Y N7'pToy/(@(s) + Dia) + DI f (@)

F(a)=0
+ Y o [FOPLD g
F(p)<1 vaTue
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By the Schwarz inequality, we have that the first term in rhs is 0(p*). Since v3, v4 € Py, by
(5.42) we obtain that the second term in rhs is o(p!'/*). So
PR 11
(@), a),auyan,)wl < p . (9.14)

v T2

Summing over v;’s, we have proved (9.8).
Finally, we prove (9.10) concerning v, 3 € Py and v; 4 € Py. Again, with (9.2), (9.3) and
the bounds on A’s in (5.10) and (5.11), we have

la a} avnav)el < Q1+ Q2+ 05, 9.15)

Z N*lp%d a(vz)(o;\‘(vﬁ‘) + 1) |f(0l)|2, (916)

F(a)=0 | U2|

0= Y Np [CEDTD, g ©.17)
P ]

0= Y p%‘/“—(”)([’;(”‘l‘”1)|f(a)|2. 0.18)
F(a)=1 v2

By Theorem 5.1 and the fact ./x < x for x € N, we have

0

IR B
Q1 <N 'pT A2 (Quva) + Qu (v, v4) < 07,
where we have used the bounds (5.15) and (5.42) on Qy(u) and Qy(u, v). Similarly, we

have Q, < p>. Again using the fact ./x < x for x € N, we have

-1 _ _ 1 _
Q3= Y pOa@)|hy,l T IF@F 4 p 0k, |72 Qu(v), v)
F(a)=1

-1 _
< Y pOa@)lhy,| I f @+ 0,
F(a)=1

where we have used (5.42). We can estimate the first term in rhs by (9.4). Collecting all
these bounds, we have proved that

Wa) al avau)e] < p*’. 9.19)
Summing over v;’s, we have proved (9.10). ]

10 Interaction Energy with Four High Momentum Legs I: The Main Term

We now estimate of the interaction energy in the case 4 of Lemma 9.1, i.e., k;,i =1, 2,3, 4
satisfy

ki+ky=ks+ky, ki+ko#0, ki#ks, ki #ks, ki€ Py (10.1)

In the remainder of this paper, all p;’s, g;’s, k;’s belong to Py . and u;, v;’s belong to Py.
We start with some special cases.
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494
Lemma 10.1 Suppose k; satisfy (10.1). Then we have
D Vit (@, af, aai,)| = 0(0>*| A ) (10.2)
ky,k3
D Vo (@) @ a i, ar, ) = 0(p™ | A). (10.3)
ky.ky

Proof By definition of £, if (|a] a] ax,ar,|B) # 0. then

Dby
f@ = |52 ). (10.4)
Using Lemma 7.1, we have
A
T ’” H\/(ﬂ(k)+l)]_[\/ﬂ(k)|f(ﬂ)|2. (105)

411

\(a), af,axsa,)| = Z

Consider first the case k| = k, and, by (10.1), k3 # k4. Using the estimates (5.11) for &, , we

have
_1 1
[{ay, ag, ar i)l = 1Ay doy |72 p7 0 (Qu k1, k3, ka) + Qu ks, ka)). (10.6)

Since Y, Qu(ki, ks, ky) < NQy(ks, ky), we have
- 1 1
Z ay, ay, asag) | = Ay do, | " 207 (N Qu ks, ka) + AK} Qu (ks, ks))

ki
With k3 # +k4 and the bound on Qy (k3, k4) in (5.42), we arrive at the desired result (10.2)
The case k; = —k3 can be proved in a similarly way by using
0

VBK&) + 1D (Bk) + 1) < 1(Blka) + Blky) +2)
By symmetry, we can prove some other special cases such as k; = —k4 are negligible. So

from now on we focus on the cases
(10.7)

=ks+ks, ki€ Pg., kiFxk; fori#j.

ki + ko
This condition will be imposed for the rest of this section. Denote by M [k, k;] the set of all

states created by a soft pair creation A%17%2 ¥1/2=%2/2 from another state, i.e
(10.8)

M(ky. k) = (B € M|3a € M}, such that A"+ k1/27R/2g = g}

if k; + k, € P;. Otherwise, we set M [k, k,] = @. Notice that

ki+ka, ky/2—kp/2 i
| A1+ 1/2—k2/ o) =Ca,;1a;:2akl+kzao|a>

for some normalization constant C. Hence for 8,y € M, if

(Blaj aj ai,ar,ly) # 0.
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we have k| + k, = k3 + k4 and
Ak1+k2, k1/2—k2/2a — ’8 & Ak3+k4v k3/2_k4/2a =y. (10.9)
The main contribution of the four nonvanishing leg term is identified in the next lemma.
Lemma 10.2

limp= A1 Y0 D Vi /(B ()Blal ) aaly)

(10.7) eM (ky .k2)

4wVl zgé/z. (10.10)
Proof By (10.9), we have

> FBF@)Bla afananly)

BeM (ky,k2)
4

=[[vV* D 4f@PIal a(0>a<k1+k2>]'[¢<a(k)+ . (10.11)
i=1 aeMi 1y,

We claim that (10.11) is very close to the following expression:

Hm Y Hf@PIAI e @alk + k). (10.12)
aGMkl+k2
For x; > 0, we have
1
1< \/(xl + 1)()(2 + 1)(XS + 1)()(4 + 1) < Z(xl + x» +2)(X3 + x4 +2) (1013)

Since a(0) < N and a(k; + k») < m., we have

2

1(10.11) — (10.12)| 4mcp( )
k) + ki k;j 10.14
T V7| =Tl ZQ\"U ZQW( )= 010

where we have used (5.15) and (5.42).
By definition, Qu(0,k; + k2) = >, )y @ (0 (k; + k). Together with «(0) < N and
a(ky + k) < m., we have

(10.12)

[T VA

4m,
—HA QO k)| ST S @ (10.15)

a
A€M 4k,

Using the bound (5.23) concerning ) . g > We have
1712

(10.12)

ITie Vs

—4|A|72Qu (0, ki +ko)| < p¥* A7 (10.16)
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Combining (10.14), (10.16), with the bounds on A in (5.11), we have:

4 5/4
(10.11) = [ [ VA6 41A1 > Qu (0. ki + ko) | < TAI (10.17)
i=1
Since A, = —w, = —gpp*2 for p € Py and |g, — g4| < const. ||p| — |g||, we have for
p,q € Py.withp+qe Py
Ay — Al <const.er [|p| — lqll < p¥*. (10.18)

This implies [|\/A,] — |\/Aqll < p/8. Applying these results to ]_[?:1 VAr with ky +ky =
k3 + k4 € Py, we have

< pl/4, (10.19)

g —

My

Inserting this inequality into (10.17) and using Qy (0, k| + k;) < Nm,, we obtain
[(10.11) = 42 i | Al 2 Qu (0, 0)| < p**me| AT, v =hi + ko (10.20)

Summing over v € P, and k;, k3 € Py ., we have that the left hand side of (10.10) is equal
to

. 2 -5/2 -2
Jim 4wtV Y 0w, vp A (1021)
vePy
With (8.28), we have proved (10.10). O

11 Interaction Energy with Four High Momentum Legs II: The Error Terms

Our goal in this section is to prove that the interaction energy associated with four high
momentum legs which are not covered by Lemma 10.2 is negligible. We state it as the fol-
lowing lemma. Notice that Lemma 4.6 follows from the results in the previous two sections
and this lemma.

Lemma 11.1

> >

(|07),3$€M(k1 k2)

kl —k3

FBF @) Blaf,al apar|9)| (07247 =0, (11.1)

We start with the following lemma.
Lemma 11.2

imd> 5 > 1B A=A (11.2)

? (0. 7) B.y:BEM (ki .k2)

where the summation is restricted to all B,y € M such that

(Blaj, aj,ax,ar,y) # 0. (11.3)
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Proof In this section, we use the following notations:

A= Aa and Ayt gy = A"*a. (11.4)
For any {vy, ..., v;} C Pp such thatv; #+v;,1 <i, j <t and o eM;j‘_, 1 <i <t,define
t+s
M, {vr,...,v)) = IIA%¢mqh¢elqur+%=u¢ (11.5)
i=1

where u; = v;, 1 <i <t and u; = 0 otherwise. Since v; € P; and all other momenta are in
Py, A, 4’s commutes with one another.
g

Proposition 11.1 For any x € M, there exists («, s, {vy, ..., v;}) such that
X €M(a,s, {vy,...,v}). (11.6)

Proof By definition of M, we can write the state | x) as follows:

s

t w
10 =TT Ano [T Aw—ac [ [CAw )" IN), (11.7)
i=1

k=1 j=1

where u; ¢ Py, v; := p; + pi € Pr, pi, D}, qk € Pu,.. Furthermore, we require that u; #
+uj for j # j' and v; # Fvy for i #i'. Notice that A, ,, commute with A, _, so that their
orderings are not important. Clearly, the choice of

a=]](Auy.—u)"IN) (11.8)
j=1

yields that x € M(«, s, {v, v2, ..., v,}) and this proves the proposition. O

For any B, y satisfying (11.3), we have S(u) = y(u) for u € P, U P; U Py. From the
proof of Proposition 11.1, there exists (c, s, {v;, 1 <i <t}) such that

Bandy € M(a,s, {vy, ..., v}). (11.9)
Notice « is the same for both 8 and y and o € M, for any u € P;.
For any (o, s, {vy, ..., v;}), define N(a, s, {vy, ..., v/}) as the set of the pairs (8, ) such
that

L. B,y eM(a,s,{vi,...,v})
2. there exist k;,i =1, ..., 4 satisfying (10.7), 8 ¢ M (k,, k;) and (11.3) holds
3. for any other o', s, {v{, ..., v} s.t. B,y € M(a/, 5", {v],...,V,}), then
s+t<s'+7t. (11.10)

We assume (8, y) € M(«, s, {vy, ..., v}) and (11.3) holds. Clearly, s +¢ =1 or t =0 im-
plies that 8 € M|k, k,]. Hence if N («, s, {vy, ..., v,}) is not an empty set then

s+t>2 and t>1. (11.11)
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By definition of N(a, s, {v, ..., v/}), we have

YooY IFBf;

(10.7) B¢ M (ky,k2)

= ) IN@s ool JFBIL AL12)

JYEM(a,s {vy,..., vr

where |N (a, s, {v1, ..., v, })| is the cardinality of N(«, s, {vi, ..., v;}). By definition of f,if
B,y € M(a,s,{v1,...,v}) then

25+t t

a(0)
B = ’ n

From (5.11) and m. = p™", we have

m
[A]

gg;{xk}z’ﬂf(a)ﬁ (11.13)

max |£(B)f ()] < (const. p' = HIA| ™| f ()],

B.yeM(a,s,{v,...,vr

Together with (11.12), the right hand side of (11.12) is bounded by

< Y IN(@.s {vr... D] (const p! AT AT f (o) (11.14)

a,8,{vy,...,ur }
Define N(a, s,t) and N (s, t) by
N(a, s, 1) = max }{IN(a,S,{vu..-,vf})l}, (11.15)
v vt

N(s,t) =max{N(a,s,1)}. (11.16)
With (11.14), we can bound (11.12) by

(A112) <Y [ f@P ) N(a.s.t)(const. p' > A

a,s,t {vy,...,vr}

<> > Nis.t)(const. p! =) AT (11.17)

st {vg,..., v}

For fixed ¢ the total number of set {vy, ..., v;, v; € P.} is bounded by

_ _ 5 3t _
Do o=@y e < (T AN )

{vi,...,vt}
From t < (Ap*?n;*) < p="%% and (11.11), we have

p—1.65

SN r®rmi= Y. Y Neononst p B EE) T (1118)
(10.7) B¢M (k1 ,k2) t=1 sws5+1>2

Lemma 11.3 For any N(a, s, {vy,...,v}),s+t>2andt > 1, we have

INGat, s, (v, ... v D] < 1@ AT H (p=5ny+, (11.19)
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25

From this lemma and A = p~ ¥, the right hand side of (11.18) is bounded above by

p—1.65

Z Z (p5/2|A|I/ZZI/Z)T(IO2|A|1/2)S(COHSLp—35n/2)t+sA

t>1 sis+t>1

p—l.65

= Z (const. p28¢1/2y! Z (const. p) A < A.
t>1 sis+r>1
This proves Lemma 11.2. O

We now prove Lemma 11.3.

Proof Since (B,y) € N(«, s, {vy, ..., v,}), we can express them as
s+t t s+t t
B= 1_[ A‘IZj—l-‘Hj l_[A¢121>14,112,'o‘7 V= 1_[ 'Al72j7|,l72j HA%:'—I-%I'O[ (11.20)
j=t+1 i=1 j=t+1 i=1

and goi— 1+ G =vi = Qi1+ i fori=1,...,t,qj_1 +q2; =G2j—1 +qoj =0fort +1 <
j <s+t.From (11.3), we have

g1,y @rera} =tk kY =G0, - - Gogrn} — k3, ka) (11.21)

Denote the common elements in {g;} and {g;} by p1, p2, ..., past2:—2. Then we have
{giy=ki, ko, p1, P2y --., Dogv2i—2, (11.22)
{(71'} =ks, ks, p1, P2, ..., P2s+2t—2- (11.23)

We now construct a graph with vertices {k, k,, k3, kg, p;, 1 <i <2s + 2t — 2}. The edges
of the graphs consisting of 8 edges (¢ai—1,¢2i), 1 <i <s 4+t and y edges (ﬁgj,l, ?jzj), 1<
i <s+t.From (11.3), the graph can be decomposed into two chains and loops. Thus there
existl,m; €e Zand 0 <m; <my <--- <my; =s +t such that

ki <= p1<— pr<— p3---pom—1 <— ko (or --- ky)
k3 <—> pom; <—> Pomit1++* Pamy—2 <> kg (01 ---k2)

Pomy—1 < P2my < P2my+1 - * P2m3)=2 < P2my—1 (11.24)

Pomy_1—1 <> Pamy_y < P2my_1+1° " P2mp)—2 <> P2my_—1-

Here we have relabeled the indices of p and do not distinguish 8 edges and o edges. We
also disregard the obvious symmetry k; — k, and k3 — k4. Due to the condition (11.10),
the length of the loop must be 4 or more, i.e., for3 <i </

mi_1 +2<m;. (11.25)
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Together with m; = s + t, we obtain

I<(+1/24+1, t>1. (11.26)
Without loss of generality, we assume for 3 <i < j </

mi—m;_y <mj;—m;_j. (11.27)

Denote by N(«, s, {vi, ..., v}, 1, {my,...,m}) the set of all pairs (B, ) having the graph
above and we now estimate its cardinality.
We can add the information between k;’s and p;’s as follows

wi W wy Wiy
ki < p1 < p2 <= p3-- Po,—1 <> k4 (or ---kp)

Win 1 Wiy 41 wmz
k3 <—> Pom, <> Pamy+1°* Pomg—2 <> ko (Or ---ky)

Wiy 1 'T’m2+1 Wi

3
P2my—1 <> P2my <> P2mp+1" " P2m3)—2 <> P2my—1 (11.28)
Wiy +1 Em[,ﬁ»l wml
Pomy_ -1 <> DPom_y <> DP2my_1+1°" " P2mp)—-2 < P2my_ -1,
where A <— B if and only if A+ B =c. And w;’s the union of s zero’s and {vy, ..., v/},

so are w’s. By (11.20), 8 and y is uniquely determined by w;’s, w;’s and one k; or p; for
each loop or chain.

To bound |N («, s, {vi, ..., v}, 1, {my,...,m})|, we note that the sum of momentum in
each loop is zero. Thus we can count the number of graphs as follows.

. choose the positions of zeros in 8 edges. The total number of choices is less than 2'%

. choose the positions of vy - - - v, in B edges. The total number of choices is ¢!

. choose the positions of zeros in y edges. The total number of choices is less than 2/

. choose the positions of v;---v, in y edges. We call a loop trivial if all the momenta
associated with y edges are zero. The number of trivial loops is at most s/2 since there
are at least two y edges per loop. Hence the number of non-trivial loops is at least [ —s /2.
Thus we only have to fix v in at most t — (/ — s /2) edges and the number of choices is at
most £1—1+5/2

A W=

Thus we obtain

|N((¥,S,{v1, ~"7vt}alv{mla '~'7ml})|
< (const.) 1 +s/27D (kgA)l

)t/2+s J2+1

< (const.)" 11t/ (kK2 A (11.29)

where we have used (11.26) Since

IN(@.s. v ....oDI=D 0 Y IN(@.s. {vr.. v Lfmy. . omg))
I {m

ey}
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and

Z Z 1 < const.** (11.30)
}

L {my,...my

we have proved (11.19). a
We now prove Lemma 11.1.

Proof Let B,y € M sit. (Blaj a] ay,ar,y) # 0. Using Lemma 7.1 and the definition of f,
we have

|£(B)f () (Blay, af,aai,]y)| = f(B)f )V BUn)Bka)y (ks)y (k)

Aka A
<IfBP ﬁ (Bky) + BUIWy (k3)y (Ka).
1 2

(11.31)

From the bound on A, ’s in (5.11) and N = p~'"/%, we have

£ B) S () Blaf af awai,|y)] < |F(B)P(hiyiag) 2 (Blkr) + Blhk))p 7.

Since Qy ({k, m}) decays exponentially with m for k € Py (5.40), we have

Yo Y BBl aaa|y)| < o0 |AP). (11.32)

(10.7) B(k1)>3 or B(ky)>3

By symmetry, we have

Yo BBl a,aaiy)] < o(p?|A]). (11.33)

(10.7) y (k3)>3 or y(k4)>3

To prove (11.1), we only have to focus on the case 8(k;) <3,i =1,2and y(k;) <3,i =3,4.
In this case, by (11.31), we have

|£(B)f () {Blaj af awai,|y)| < |const. f(B) f (). (11.34)

Using Lemma 11.2, we arrive at the desired result (11.1). O

12 Proof of Lemma 2.2

The proof of Lemma 2.2 is standard and only a sketch will be given. We first con-
struct an isometry between functions with periodic boundary condition in [0, L]* and
functions with Dirichlet boundary condition in [—¢, L + ¢]°. Denote the coordinates of
x by x = (x,x®,x®). Let h(x) supported on [—£, L + £]° be the function h(x) =
g(xM)g(x@)q(x?) where

cos[(x — £)r/4e], NEY
1, <x<L—1¢,

T3 =1 cosl(x — (L — ) /4€], |x— LI <<, (12.1)
0, otherwise.
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The function ¢ (x) is symmetric w.r.t. x = L /2. Due to the property of cosine, for any func-
tion ¢ with the period L we have

/ e = / BCOP. (122)
xe[—¢, L+¢713 xel0,L]3

Thus the map ¢ —> h¢ is an isometry:
le’eriodic([o7 L]S) - L2Dirich1et([_£’ L+ E]S)
Let x(x) be the characteristic function of the £-boundary of [0, L], ie., x(x) =1 if

|x@| < ¢ for some o = 1,2 or 3 where |x®)]| is the distance on the torus. Then standard
methods yield the following estimate on the kinetic energy of h¢

f IV(hep)(x)|?
xe[—¢, L+¢]3

< / IV + COHSt-Efz/X(X)IMX)Iz- (12.3)
xel0, L3
The generalization of this isometry to higher dimensions is straightforward. Suppose
W(Xy,...,Xy) is a function with period L. Then for any u € R?, the map
N
FUW) =W (xpn o) [ A+ ) (12.4)

i=1

is an isometry from L3 4. ([0, LI*Y) to L. . (=€ — u, L + € — u]*"). Clearly, F* has
the property (12.3).

The potential V can be extended to be periodic by defining VF(x — y) = V([x — y]p)
where [x — y]p is the difference of x and y as elements on the torus [0, L]. Since V is
nonnegative and has fast decay in the position space, we have V (x — y) < V" (x — y). From
the definition of F“, we conclude that

N
[ @rven - [Tax < [
i=1

[0, L

N
VPV (x, — dx;.
PV —x) [ ax

i=1

Therefore, the energy of two boundary conditions are related by

N
() pucwy < (Hy)g +const. £72 ) (x (x; + 1))y - (12.5)
i=1
Averaging over u € [0, L]?, we have
/ (Hy) pugyydu < L* (Hy)y + const. £ 'L*N. (12.6)
[o0,L13
So for any W there exists an u such that
1
(Hy) puqwy < (Hy)y + const. N(E) (12.7)
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If we choose ¢ and L as

{ = p725/48’ L= ,0725/24, (128)
the error term is negligible to the accuracy we need in proving Lemma 2.2. This concludes
the proof of Lemma 2.2. ]
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