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Abstract Consider N bosons in a finite box � = [0,L]3 ⊂ R3 interacting via a two-body
smooth repulsive short range potential. We construct a variational state which gives the
following upper bound on the ground state energy per particle

limρ→0limL→∞,N/L3→ρ

(
e0(ρ) − 4πaρ

(4πa)5/2(ρ)3/2

)
≤ 16

15π2
,

where a is the scattering length of the potential. Previously, an upper bound of the form
C16/15π2 for some constant C > 1 was obtained in (Erdös et al. in Phys. Rev. A 78:053627,
2008). Our result proves the upper bound of the prediction by Lee and Yang (Phys. Rev.
105(3):1119–1120, 1957) and Lee et al. (Phys. Rev. 106(6):1135–1145, 1957).
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1 Introduction

The ground state energy is a fundamental property of a quantum system and it has been
intensively studied since the invention of the quantum mechanics. The recent progresses in
experiments for the Bose-Einstein condensation have inspired re-examination of the theo-
retic foundation concerning the Bose system and, in particular, its ground state energy. In
the low density limit, the leading term of the ground state energy per particle was identified
rigorously by Dyson (upper bound) [3] and Lieb-Yngvason (lower bound) [14] to be 4πa�,
where a is the scattering length of the two-body potential and � is the density. The famous
second order correction to this leading term was first computed by Lee-Yang [10] (see also
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Lee-Huang-Yang [9] and the recent paper by Yang [16] for results in other dimensions). To
describe this prediction, we now fix our notations: Consider N interacting bosons in a finite
box � = [0,L]3 ⊂ R3 with periodic boundary conditions. The two-body interaction is given
by a smooth nonnegative potential V of fast decay. The Lee-Yang’s prediction of the energy
per particle up to the second order is given by

e0(ρ) = 4π�a

[
1 + 128

15
√

π
(�a3)1/2 + · · ·

]
. (1.1)

The approach by Lee-Yang [10] is based on the pseudo-potential approximation [7, 9] and
the “binary collision expansion method” [9]. One can also obtain (1.1) by performing the
Bogoliubov [1, 2] approximation and then replacing the integral of the potential by its scat-
tering length [8]. Another derivation of (1.1) was later given by Lieb [11] using a self-
consistent closure assumption for the hierarchy of correlation functions.

In the recent paper [4], the potential V was replaced by λV0 for some fixed function V0

and λ is small. A variational state was constructed to yield the rigorous upper bound

e0(ρ) ≤ 4π�a

[
1 + 128

15
√

π
(�a3)1/2Sλ

]
+ O(�2| log�|) (1.2)

with Sλ ≤ 1 + Cλ. In the limit λ → 0, one recovers the prediction of Lee-Yang [10] and
Lee-Huang-Yang [9]. The trial state in [4] does not have a fixed number of particles, and is
a state in the Fock space with expected number of particles N (presumably a trial state with
a fixed number of particles can be constructed with a similar idea). The trial state in [4] is
similar to the trial state used by Girardeau and Arnowitt [5] and recently by Solovej [15]; it
is of the form

exp

[
|�|−1

∑
k

cka
†
ka

†
−ka0 a0 + √

N0a
†
0

]
|0〉 (1.3)

where ck and N0 have to be chosen carefully to give the correct asymptotic in energy. This
state captures the idea that particle pairs of opposite momenta are created from the sea of
condensate consisting of zero momentum particles. It is believed that this type of trial state
gives the ground state energy consistent with the Bogoliubov approximation. In the case of
Bose gas, the Bogoliubov approximation yields the correct energy up to the order ρ3/2, but
the constant is correct only in the semiclassical limit—consistent with the calculation using
the trial state (1.3). It should be noted that the Bogoliubov approximation gives the correct
“correlation energy” in several setting including the one and two component charged Boson
gases [12, 13, 15] and the Bose gas in large density-weak potential limit [6].

For the Bose gas in low density, the result of [4] suggests to correct the error by renor-
malizing the propagator. Unfortunately, it is difficult to implement this idea. Our main ob-
servation is to relax the concept of condensates by allowing particle pairs to have nonzero
total momenta. More precisely, we consider a trial state of the form

exp

[
|�|−1

∑
k

∑
v∼√

ρ

2
√

λk+v/2λ−k+v/2a
†
k+v/2a

†
−k+v/2av a0

+ |�|−1
∑

k

cka
†
k a

†
−ka0 a0 + √

N0a
†
0

]
|0〉 (1.4)

for suitably chosen c and λ. Notice that the total momentum of the pair, v, is required to
be of order ρ1/2 and the constant 2 comes from the ordering of ava0. We shall make further
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simplification that λk = ck . Even with this simplification, however, this state is still too com-
plicated. We will extract some properties from this representation and define an N particle
trial state whose energy is given by the Lee-Yang’s prediction up to the second order term.
Details will be given in Sect. 3. Our result shows that, in order to obtain the second order
energy, the typical ansatz for the Bogoliubov approximation should be extended to allow
pair particles with nonzero momenta. This also suggests that the Bogoliubov approximation
has to be modified in order to yield the correct energy of the low density Bose gas to the
second order.

2 Notations and Main Results

Let � = [0,L]3 ⊂ R
3 be a cube with periodic boundary conditions with the dual space

�∗ := ( 2π
L

Z)3. The Fourier transform is defined as

Wp := Ŵ (p) =
∫

x∈R3
e−ipxW(x)dx, W(x) = 1

|�|
∑
p∈�∗

eipxWp.

Here we have used the convention to denote the Fourier transform of a function W at the
momentum p by Wp instead of Ŵ (p) to avoid too heavy notations. Since the summation of
p is always restricted to �∗, we will not explicitly specify it.

We will use the bosonic operators with the commutator relations

[ap , a†
q ] = ap a†

q − a†
qap =

{
1 if p = q,

0 otherwise.

The two body interaction is given by a smooth, symmetric non-negative function V (x) of
fast decay. Clearly, in the Fourier space, we have Vu = V−u = V̄u. Furthermore, we assume
that the potential V is small so that the Born series converges. The Hamiltonian of the many-
body systems with the potential V and the periodic boundary condition is thus given by

H =
∑

p

p2a†
pap + 1

|�|
∑
p,q,u

Vua
†
pa†

qap−uaq+u. (2.1)

Let 1 − w be the zero energy scattering solution

−�(1 − w) + V (1 − w) = 0

with 0 ≤ w < 1 and w(x) → 0 as |x| → ∞. Then the scattering length is given by the
formula

a := 1

4π

∫
R3

V (x)(1 − w(x))dx.

Introduce g0, whose meaning will be explained later on, to denote the quantity

g0 = 4πa.

Let HN be the Hilbert space of N bosons. Denote by ρN = N/� the density of the
system. The ground state energy of the Hamiltonian (2.1) in HN is given by

EP
0 (ρ,�) = inf specHHN
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and the ground state energy per particle is eP
0 (ρ,�) = EP

0 (ρ,�)/N . We can also consider
other boundary conditions, e.g., eD

0 (ρ,�) is the Dirichlet boundary condition ground state
energy per particle.

In this paper, we will always take the limit L → ∞ so that the density ρN → ρ for
some fixed density ρ. From now on, we will use limL→∞ for the more complicated notation
limL→∞,N/L3→ρ . We now state the main result of this paper.

Theorem 2.1 Suppose the potential V is smooth, symmetric, nonnegative with fast decay
and sufficiently small so that the Born series converges. Then the ground state energy per
particle satisfies the upper bound

lim
ρ→0

lim
L→∞

(
eP

0 (ρ,�) − g0ρ

g
5/2
0 ρ3/2

)
≤ 16

15π2
. (2.2)

Although we state the theorem in the form of limit ρ → 0, an error bound is available
from the proof. We avoid stating such an estimate to simplify the notations and proofs. Our
result holds also for Dirichlet boundary condition.

2.1 Reduction to Small Torus with Periodic Boundary Conditions

To prove Theorem 2.1, we only need to construct a trial state �(ρ,�) satisfying the bound-
ary condition and

lim
ρ→0

lim
�→∞

( 〈HN 〉�N−1 − g0ρ

g
5/2
0 ρ3/2

)
≤ 16

15π2
. (2.3)

The first step is to construct a trial state with a Dirichlet boundary condition in a cube of
order slightly bigger than ρ−1.

Lemma 2.1 For density ρ small enough, there exist L ∼ ρ −25/24 and a trial state � of N

(N = ρL3) particles on � = [0,L]3 satisfying the Dirichlet boundary condition and

lim
ρ→0

( 〈HN 〉�N−1 − g0ρ

g
5/2
0 ρ 3/2

)
≤ 16

15π2
. (2.4)

Once we have a trial state with the Dirichlet boundary condition, we can duplicate it so
that a trial state can be constructed for cubes with linear dimension � ρ−25/24. This proves
Theorem 2.1.

The next lemma shows that a Dirichlet boundary condition trial state with correct energy
can be obtained from a periodic one.

Lemma 2.2 Recall the ground state energies per particle eD
0 (ρ,�) and eP

0 (ρ,�) for the
Dirichlet and periodic boundary condition. Let � = [0,L]3 and L = ρ−25/24. Suppose the
energy for the periodic boundary condition satisfies that

lim
ρ→0

(
eP

0 (ρ,�) − g0ρ

g
5/2
0 ρ3/2

)
≤ 16

15π2
. (2.5)
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Then for �̃ = [0, L̃]3, L̃ = L(1 + 2ρ25/48) and ρ̃ = ρL3/L̃3, the following estimate for the
energy of the Dirichlet boundary condition holds:

lim
ρ→0

(
eD

0 (ρ̃, �̃) − g0ρ̃

g
5/2
0 ρ̃ 3/2

)
≤ 16

15π2
. (2.6)

The construction of a periodic trial state yielding the correct energy upper bound is the
core of this paper. We state it as the following theorem.

Theorem 2.2 There exists a periodic trial state � of N particles on � = [0,L]3, L =
ρ−25/24 such that (N = |�|ρ)

lim
ρ→0

( 〈HN 〉�N−1 − g0ρ

g
5/2
0 ρ3/2

)
≤ 16

15π2
. (2.7)

This paper is organized as follows: In Sect. 3, we define rigorously the trial state. In
Sect. 4, we outline the lemmas needed to prove Theorem 2.2. In Sect. 5, we estimate the
number of particles in the condensate and various momentum regimes. These estimates are
the building blocks for all other estimates later on. In Sect. 6, we estimate the kinetic energy.
The potential energy is estimated in Sects. 7–11. Finally in Sect. 12, we prove the reduction
to the periodic boundary condition, i.e., Lemma 2.2. This proof follows a standard approach
and only a sketch will be given.

3 Definition of the Trial State

We now give a formal definition of the trial state. This somehow abstract definition will
be explained later on. We first identify four regions in the momentum space �∗ which are
relevant to the construction of the trial state: P0 for the condensate, PL for the low momenta,
which are of the order ρ1/2; PH for momenta of order one, and PI the region between PL

and PH .

Definition 3.1 Define four subsets of momentum space: P0, PL, PI and PH .

P0 ≡ {p = 0} ,

PL ≡ {
p ∈ �∗|εLρ1/2 ≤ |p| ≤ η−1

L ρ1/2
}
,

(3.1)
PI ≡ {

p ∈ �∗|η−1
L ρ1/2 < |p| ≤ εH

}
,

PH ≡ {
p ∈ �∗|εH < |p|} ,

where the parameters are chosen so that

εL, ηL, εH ≡ ρη and η ≡ 1/200. (3.2)

Denote by P = P0 ∪ PL ∪ PI ∪ PH .

We remark that the momenta between P0 and PL are irrelevant to our construction. Next,
we need a notation for the collection of states with N particles.
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Definition 3.2 Let M̃ be the set of all functions α : P → N ∪ 0 such that

∑
k∈P

α(k) = N. (3.3)

For any α ∈ M̃ , denote by |α〉 ∈ HN the unique state (in this case, an N -particle wave
function) defined by the map α

|α〉 = C
∏
k∈P

(a
†
k )

α(k)|0〉,

where the positive constant C is chosen so that |α〉 is L2 normalized. Define αfree as
αfree(k) = Nδ0,k .

Clearly, we have

a
†
kak|α〉 = α(k)|α〉, ∀k ∈ P. (3.4)

Definition 3.3 We define two relations between functions in M̃ :

1. Strict pair creation of momentum k: Denote by β := Akα if β is generated by creating a
pair of particles with momenta k and −k, i.e.,

β(p) =
⎧⎨
⎩

α(p) − 2, p = 0,

α(p) + 1, p = ±k,

α(p), others.
(3.5)

In terms of states, we have

|β〉 = Ca+
k a+

−ka
2
0 |α〉

where C is a positive constant so that the state |β〉 is normalized.
2. Soft pair creation with total momentum u and difference 2k: Denote by β = Au, kα if β is

generated by creating two particles with high momenta ±k + u/2 ∈ PH so that the total
momentum u is in PL, i.e.,

β(p) =
⎧⎨
⎩

α(p) − 1, p = 0 or u,

α(p) + 1, p = ±k + u/2,

α(p), others.
(3.6)

Notice that Au, kα is defined only if ±k + u/2 ∈ PH . In terms of states, we have

|β〉 = Ca+
k+u/2a

+
−k+u/2a0au|α〉

where C is the normalization constant. Since β(p) has to be nonnegative, the state Akα

or Au, kα is not defined for all α or k,u.

Define Dα to be the set all possible derivations of α from the previous two operations:

Dα = {
Au, kα ∈ M̃

} ∪ {
Akα ∈ M̃

}
. (3.7)

Our trial state will be of the form
∑

α∈M̃ f (α)|α〉 where f is supported in a subset of M̃

which we now define.
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Definition 3.4 Fix a large real number kc . We define M as the smallest subset of M̃ such
that

1. αfree ∈ M .
2. M is closed under strict pair creation provided the momentum u ∈ PI ∪PH , i.e., if α ∈ M

and Auα ∈ M̃ then Auα ∈ M .
3. M is closed under strict pair creation provided the momentum u ∈ PL and max{α(u),

α(−u)} < mc , i.e., if α ∈ M and Auα ∈ M̃ , then Auα ∈ M . Here we choose mc as

mc ≡ ρ−η = ρ−1/200. (3.8)

4. M is closed under soft pair creation from states with perfect pairing of momenta u and
−u. More precisely, for u ∈ PL with α(u) = α(−u), if α ∈ M , Au, kα ∈ M̃ and

εH ≤ | ± k + u/2| ≤ kc,

then Au, kα ∈ M .

The set M is unique since the intersection of two such sets M1 and M2 satisfies all four
conditions.

For any u ∈ PL, we define the set of states with symmetric (asymmetric resp.) pair parti-
cles of momenta u,−u by Ms

u (Ma
u resp.):

Ms
u ≡ {α ∈ M|α(u) = α(−u)},

Ma
u ≡ {α ∈ M|α(u) �= α(−u)}. (3.9)

Denote by α∗(u) the maximum of α(u) and α(−u):

α∗(u) = max{α(u),α(−u)}. (3.10)

Since soft pair creation was allowed only from momenta in PL and the final momenta are in
PH , we have

α∗(u) − α(u) ∈ {0,1}, α(−u) = α(u), for all u ∈ PI .

Before defining the weight f (α), we introduce several quantities related to the scattering
equation. In the momentum space, the scattering equation is given by (p ∈ R

3)

−p2wp + Vp −
∫

r

Vp−rwr = 0, ∀p �= 0. (3.11)

Let g be the function

g(x) := V (x)(1 − w(x)). (3.12)

Then the scattering equation in momentum space takes the form

gp = p2wp ∀p �= 0. (3.13)

One can check 4πa = g0 this explains the notation g0 used in Theorem 2.1 and Theorem 2.2.
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Definition 3.5 Define for all ε �= 0

ρε ≡ ρ0 + ερ3/2, ρ0 := ρ − 1

3π2
(g0)

3/2ρ3/2, (3.14)

where ρ0 will be the approximate density of the condensate. Define the “chemical potential”
λ by

λk =
⎧⎨
⎩

1−
√

1+4ρg0|k|−2

1+
√

1+4ρg0|k|−2
ρ−1, k ∈ PL,

−wk, k ∈ PI ∪ PH .
(3.15)

One can check that, to the leading order, λ is given by

ρλk ≡ 1 − √
1 + 4ρgk|k|−2

1 + √
1 + 4ρgk|k|−2

. (3.16)

Notice that λk is real number and can be negative.

Definition 3.6 (The Trial State) Let � be defined by

� ≡
∑
α∈M

f (α)|α〉 (3.17)

where the coefficient f is given by

f (α) = CN

√
|�|α(0)

α(0)!
∏
k �=0

(
√

λk)
α(k)

∏
u∈PL,α∗(u)−α(u)=1

√
4α∗(u)λu

|�| . (3.18)

Here we follow the convention
√

x = √|x|i for x < 0. For convenience, we define f (α) = 0
for α /∈ M . The constant CN is chosen so that � is L2 normalized, i.e.,

〈�|�〉 = 1.

Theorem 3.1 Suppose � = [0,L]3 and L = ρ−25/24. Then the trial state � in (3.18) satis-
fies the estimate

lim
kc→∞

lim
ρ→0

( 〈HN 〉�N−1 − g0ρ

g
5/2
0 ρ3/2

)
≤ 16

15π2
, (3.19)

where kc is given in Definition 3.4. We recall that m−1
c , εL, ηL, εH are chosen as a small

power of ρ in (3.2) and (3.8).

3.1 Heuristic Derivation of the Trial State

We now give a heuristic idea for the construction of the trial state. Fix an ordering of mo-
menta in �∗ so that the first one is the zero momentum. We will use the occupation number
representation so that

|n1, n2, . . .〉 (3.20)
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represents the normalized state with ni particles of momentum ki . For example,

|N,0,0, . . .〉 = 1√
N ! (a

†
0)

N |0〉.

Recall that we would like to generate a state of the form in (1.4). A slightly modified one is

exp

[
|�|−1

∑
k

∑
v∼√

ρ

2
√

λk+v/2λ−k+v/2a
†
k+v/2a

†
−k+v/2av a0

+ |�|−1
∑

k

λka
†
ka

†
−ka0 a0

]
|N,0,0, . . .〉. (3.21)

We now expand the exponential and require that a
†
k+v/2a

†
−k+v/2av a0 to appear at most

once. The rationale of this assumption is that the soft pair creation is a rare event and thus
we can neglect higher order terms. Our trial state is thus a sum of the following state para-
metrized by k1, . . . , ks , n1, . . . , ns , k′

1, . . . , k
′
t and v1, . . . , vt :

const.
t∏

j=1

√
4λk′

j
+vj /2λ−k′

j
+vj /2

s∏
i=1

(λki
)ni |α〉 (3.22)

where

|α〉 = const. |�|−t−∑s
i=1 ni

t∏
j=1

a
†
vj
2 +k′

j

a
†
vj
2 −k′

j

avj
a0

×
s∏

i=1

1

ni !
(
a

†
ki
a

†
−ki

a0 a0

)ni |N,0, . . .〉. (3.23)

Here we have chosen the constant so that the norm of |α〉 is one. We also require that
vi + vj �= 0 for 1 ≤ i, j ≤ t since vi + vj = 0 is a higher order event.

We further make the simplifying assumption that vi ∈ PL. Observe now that the state
|α〉 can be obtained from strict and soft pair creations. This explains the core idea behind
the definition of M in Definition 3.4. Other restrictions in the definition were mostly due to
various cutoffs needed in the estimates. Finally, up to factors depending only on � and N ,
the coefficient in (3.22) gives f (α) in (3.18). Notice all factors depending on s, t, ni were
already included in |α〉.

The choice of λ is much more complicated. To the first approximation, λ can be obtain
from the work of [4]. We thus use this choice to identify the error terms. Once this is done,
we optimize the main terms and this leads to the current definition of λ. Notice that, since
our trial state is different, there are more main terms than in [4].

4 Proof of Theorem 2.2

Proof Our goal is to prove

lim
kc→∞

(
lim
ρ→0

( |�|−1〈H 〉� − g0ρ
2

ρ5/2

))
≤ 16

15π2
g

5/2
0 . (4.1)
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Here g0 = 4πa, 〈H 〉� = 〈�|H |�〉. We decompose the Hamiltonian as follows:

H =
N∑

i=1

−�i + HS1 + HS2 + HS3 + HA1 + HA2, (4.2)

where

1. HS1 is the part of interaction that annihilates two particles and creates the same two
particles, i.e.,

HS1 = |�|−1
∑

u

V0a
†
ua

†
uauau + |�|−1

∑
u�=v

(Vu−v + V0)a
†
ua

†
vauav. (4.3)

2. HS2 is the interaction between the condensate and strict pairs, i.e.,

HS2 = |�|−1
∑
u�=0

Vua
†
ua

†
−ua0a0 + C.C. (4.4)

3. HS3 is the part of interaction that strict pairs are involved, i.e.,

HS3 = |�|−1
∑

u,v �=0,u�=v

Vu−va
†
ua

†
−uava−v. (4.5)

4. HA1 is the part of the interaction that one and only one condensate particle is involved
i.e.,

HA1 = |�|−1
∑

v1,v2,v3 �=0

2Vv2a
†
0a

†
v1

av2av3 + C.C. (4.6)

5. HA2 is the part of the interaction which is not counted in HS1 and there is no condensate
nor strict pair involved i.e.,

HA2 = |�|−1
∑

vi �=0,v1+v2 �=0,{v1,v2}�={v3,v4}
Vv1−v3a

†
v1

a†
v2

av3av4 . (4.7)

The estimates for the energies of these components are stated as the following lemmas,
which will be proved in later sections.

Lemma 4.1 The total kinetic energy is bounded above by

lim
kc,ρ

(
1

|�|

〈
N∑

i=1

−�i

〉
�

− ρ2
0‖∇w‖2

2

)
ρ− 5

2 ≤ 4‖∇w‖2
2g

3/2
0

3π2
− 8g

5/2
0

5π2
. (4.8)

Lemma 4.2 The expectation value of HS1 is bounded above by,

lim
kc,ρ

(
1

|�| 〈HS1〉� − ρ2
0V0

)
ρ−5/2 ≤ 4V0g

3/2
0

3π2
. (4.9)

Lemma 4.3 The expectation value of HS2 is bounded above by,

lim
kc,ρ

(
1

|�| 〈HS2〉� + 2ρ2
0‖V w‖1

)
ρ−5/2 ≤ 2V0g

3/2
0

π2
. (4.10)
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Lemma 4.4 The expectation value of HS3 is bounded above by,

lim
kc,ρ

(
1

|�| 〈HS3〉� − ρ2
0‖V w2‖1

)
ρ−5/2 ≤ −2‖V w‖1g

3/2
0

π2
. (4.11)

Lemma 4.5 The expectation value of HA1 is bounded above by,

lim
kc,ρ

(
1

|�| 〈HA1〉�
)

ρ−5/2 ≤ −8‖V w‖1g
3/2
0

3π2
. (4.12)

Lemma 4.6 The expectation value of HA2 is bounded above by,

lim
kc,ρ

(
1

|�| 〈HA2〉�
)

ρ−5/2 ≤ 4‖V w2‖1g
3/2
0

3π2
. (4.13)

By definitions of g0 and w (3.11), (3.12), we have

‖∇w‖2
2 − ‖V w‖1 + ‖V w2‖1 = 0, V0 − ‖V w‖1 = g0. (4.14)

Summing (4.8)–(4.13), we have

lim
kc,ρ

(
1

|�| 〈HN 〉� − ρ2
0g0

)
ρ−5/2 ≤ 26g

5/2
0

15π2
. (4.15)

By definition of ρ0 (3.14), we have proved (4.1). �

5 Estimates on the Numbers of Particles

The first step to prove the Lemma 4.1 to Lemma 4.6 is to estimate the number of particles
in the condensate, PL,PI , and PH . This is the main task of this section and we start with the
following notations.

Definition 5.1 Suppose ui, kj ∈ P for i = 1, . . . , t, j = 1, . . . , s.

1. The expectation of the product of particle numbers with momenta u1, . . . , us :

Q� (u1, u2, . . . , us) =
〈

s∏
i=1

a†
ui

aui

〉
�

=
∑
α∈M

s∏
i=1

α(ui)|f (α)|2.

2. The probability to have mi particles with momentum ui, i = 1, . . . , s:

Q� ({u1,m1} , . . . , {ut ,mt }) ≡
∑
α∈A

|f (α)|2. (5.1)

Here A = {
α ∈ M|α(u1) = m1, . . . , α(ut ) = mt

}
.

3. The expectation of the product of particle numbers with momenta k1, . . ., ks , conditioned
that there are mi particles with momentum ui :

Q� (k1, . . . , ks | {u1,m1} , . . . , {ut ,mt })



464 H.-T. Yau, J. Yin

≡
(∑

α∈A

s∏
i=1

α(ki)|f (α)|2
)(∑

α∈A

|f (α)|2
)−1

,

where A is the same as in item 2.

The following theorem provides the main estimates on the number of particles.

Theorem 5.1 In the limit limkc→∞ limρ→0, Q�(u) can be estimated as follows

lim
kc→∞

lim
ρ→0

(
ρ−3/2|�|−1

∑
u∈PI ∪PH

Q�(u)

)
= 0, (5.2)

lim
kc→∞

lim
ρ→0

(
ρ−3/2|�|−1

∑
u∈PL

Q�(u)

)
= 1

3π2
g

3/2
0 . (5.3)

We first collect a few obvious identities of f into the following lemma.

Lemma 5.1

1. If k ∈ PI ∪ PH and α, Akα ∈ M , then

f (Akα) =
√

α(0)

|�|

√
α(0) − 1

|�| λkf (α). (5.4)

2. If k ∈ PL, α ∈ Ms
k and α, Akα ∈ M , then

f (Akα) =
√

α(0)

|�|

√
α(0) − 1

|�| λkf (α). (5.5)

3. If k ∈ PL, α ∈ Ma
k and α, Akα ∈ M , then

f (Akα) =
√

α(0)

|�|

√
α(0) − 1

|�|

√
α∗(k) + 1

α∗(k)
λkf (α). (5.6)

4. If α ∈ Ms
u and Au,kα ∈ M , then

f (Au,kα) = 2

√
α(0)

|�|

√
α(u)

|�|
√

λk+ u
2

√
λ−k+ u

2
f (α). (5.7)

5. If α ∈ Ma
u and Au,kα ∈ M , then

f (Au,kα) = 1

2λu

√
α(0)

|�|

√
|�|
α(u)

√
λk+ u

2

√
λ−k+ u

2
f (α). (5.8)

In defining the space M , the operation Au,kα is not allowed when α ∈ Ma
u . However, it

is possible through rare coincidences that Au,kα ∈ M even if α ∈ Ma
u . Clearly, α ∈ Ma

u and
Au,kα ∈ M imply that α(u) = α(−u)+1. The following lemma summarizes some properties
we need for λ.
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Lemma 5.2

1. For any k ∈ PL ∪ PI ∪ PH , λk only depends on |k| and

|λk| ≤ gk|k|−2 ≤ g0|k|−2, |ρλk| ≤ 1 − const. εL. (5.9)

2. For any k ∈ PL, λk is negative and

−g0

2
η2

Lρ−1 ≥ λu ≥ −ρ−1. (5.10)

3. For any k ∈ PH , |λk| is bounded as

|λu| ≤ g0ε
−2
H . (5.11)

To prove Theorem 5.1, we start with the following estimate on the condensate.

Lemma 5.3 For any ε > 0, when ρ is small enough, the expected number of zero-momentum
particles can be estimated by

|�|ρ−ε ≤ Q� (0) ≤ |�|ρε. (5.12)

5.1 A Lower Bound on the Number of Condensates

Since the total number of particles in fixed to be N , upper bound on Q�(u) for (u �= 0) yields
a lower bound for Q�(0). The following lemma provides the upper bounds for expected
number of particles in various momentum space regions.

Lemma 5.4 For small enough ρ, the following upper bounds on Q�(u) hold:

1. For u ∈ PI ,

Q�(u) ≤ λ2
uρ

2

1 − λ2
uρ

2
=

∞∑
i=1

(λuρ)2i . (5.13)

2. For u ∈ PL,

Q�(u) ≤ λ2
uρ

2

1 − λ2
uρ

2

(
1 + const.

ρmc

εH

)
. (5.14)

3. For u ∈ PH ,

Q�(u) ≤ const. ρ2|u|−2|λu|. (5.15)

Proof The basic idea to prove Lemma 5.4 is the following lemma which compares, in par-
ticular, Q�({u,m}) and Q�({u,m − 1}).

Proposition 5.1 When ρ is small enough, for any u ∈ PI , we have

Q�({u,m}) ≤ (λuρ)2iQ�({u,m − i}) for m ≥ i ≥ 1. (5.16)

Proof We start with the following simple observation, whose proof is obvious and we omit
it.
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Proposition 5.2 For any u ∈ PI fixed and all α ∈ M with α(u) = m ≥ 1, there exists a
β ∈ M such that Auβ = α and β(u) = m − 1.

From the property of f in (5.4) and β(0) ≤ N , we obtain

|f (Auβ)| = |λu|β(0)

|�| |f (β)| ≤ |λu|ρ |f (β)|.

Therefore, we have for m ≥ 1

Q� ({u,m}) ≤
∑

β(u)=m−1

|f (Auβ)|2 ≤ λ2
uρ

2
∑

β(u)=m−1

|f (β)|2

= λ2
uρ

2Q� ({u,m − 1}) . (5.17)

This proves (5.16) for i = 1. The general cases follow from iterations. �

Together with
∑N

m=0 Q�({u,m}) = 1, we have

Q�(u) =
N∑

m=1

mQ�({u,m}) =
N∑

i=1

(
N∑

m=i

Q� ({u,m})
)

≤
N∑

i=1

(λuρ)2i

(
N∑

m=0

Q� ({u,m})
)

= λ2
uρ

2

1 − λ2
uρ

2
. (5.18)

This proves (5.13).
We now prove (5.14). Recall that ρ is small, 1 ≤ m ≤ mc and u ∈ PL. From the definition

of M (3.9), all elements in the asymmetric part, Ma
u , are generated from the symmetric part

Ms
u via soft pair creations. Thus

α∗(u)=m∑
α:α∈Ma

u

|f (α)|2 ≤
β(u)=m∑
β:β∈Ms

u

( ∑
k:±k+u/2∈PH

|f (Au,kβ)|2
)

. (5.19)

From (5.7), we have, for β(u) ≤ m,

|f (Au,kβ)|2 = 4|λk+u/2λ−k+u/2|β(0)

|�|
β(u)

|�| |f (β)|2

≤ 4|λk+u/2λ−k+u/2|ρm

|�| |f (β)|2. (5.20)

Using the upper bound of λk in (5.9) and |u| � |k|, we have

∑
k:±k+u/2∈PH

∣∣λk+u/2λ−k+u/2

∣∣ ≤
∑

p∈PH

const. |p |−4 ≤ const. ε−1
H |�|. (5.21)

Inserting these results into (5.19), we obtain

∑
α:α∈Ma

u ,α∗(u)=m

|f (α)|2 ≤ const.
ρm

εH

∑
β:β∈Ms

u,β(u)=m

|f (β)|2. (5.22)
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Summing the last bound over 1 ≤ m ≤ mc , we have, for each u fixed,

∑
α:α∈Ma

u

|f (α)|2 ≤ const.
ρmc

εH

. (5.23)

Using this method, we can also prove, for u �= ±v,

∑
α:α∈Ma

u ,α∈Ma
v

|f (α)|2 ≤ const.

(
ρmc

εH

)2

. (5.24)

From (5.22), we have, for ρ is small enough

Q�(u) ≤
mc∑

m=1

(
m

α(u)=m∑
α:α∈Ms

u

|f (α)|2
)(

1 + const.
ρmc

εH

)
. (5.25)

Following the proof of (5.17), we have the bound

[
α∈Ms

u∑
α:α(u)=m

|f (α)|2
]

≤ λ2
uρ

2

[
β∈Ms

u∑
β:β(u)=m−1

|f (β)|2
]
. (5.26)

Therefore, we can prove (5.14) using the argument of (5.18).
We now prove (5.15) by starting with the following proposition. Once again, the proof is

straightforward and we omit it.

Proposition 5.3 For any u ∈ PH fixed and all α ∈ M with α(u) = m ≥ 1, either there exists
β ∈ M such that Auβ = α and β(u) = m − 1 or there exists v ∈ PL and β ∈ Ms

v such that
α = Av,u−v/2β .

From this proposition, we have

Q�({u,m}) ≤
∑

β:β(u)=m−1

[
|f (Auβ)|2 +

β∈Ms
v∑

v∈PL,Av,u−v/2β∈M

|f (Av,u−v/2β)|2
]
. (5.27)

By the properties of f in (5.4), (5.7), we obtain

|f (Auβ)|2 +
∑
v∈PL

|f (Av,u−v/2β)|2 ≤
(

ρ2λ2
u +

∑
v∈PL

4ρ
β(v)

|�| |λuλ−u+v|
)

|f (β)|2.

Since v ∈ PL and u ∈ PH , from (5.9) we have |λu|, |λ−u+v| ≤ const. |u|−2. By definition of
M , β(v) ≤ mc . Thus

∑
v∈PL

4ρ
β(v)

|�| ≤
∑
v∈PL

4ρ
mc

|�| ≤ const. η−3
L mcρ

5/2.

Hence we have

|f (Auβ)|2 +
∑
v∈PL

|f (Av,u−v/2β)|2 ≤ const. |u|−2 |λu|ρ2|f (β)|2.
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Together with the bound in (5.27), we obtain

Q�({u,m}) ≤ const. |λu||u|−2ρ2Q�({u,m − 1}) for m ≥ 1. (5.28)

Summing the last inequality over m, we have proved (5.15). �

The summations in the inequalities in Lemma 5.4 can be performed; we summarize the
conclusions in the following lemma.

Proposition 5.4 Recall that εL, ηL, εH are chosen in Definition 3.1 as ρη. Then for any kc

and small enough ρ we have

|�|−1
∑
u∈PI

Q�(u) ≤ const. ρ3/2+η, (5.29)

|�|−1
∑
u∈PH

Q�(u) ≤ ρ7/4, (5.30)

|�|−1
∑
u∈PL

Q�(u) ≤
(

g
3/2
0

3π2
+ const. ρη

)
ρ3/2. (5.31)

Assuming this proposition, we have, for any ε > 0, when ρ is small enough,

Q�(0) = N −
∑
u�=0

Q�(u) ≥ ρ−ε|�|. (5.32)

This proves the lower bound in Lemma 5.3. We now prove Proposition 5.4.

Proof The upper bound (5.30) follows from (5.15), |λu| ≤ g0|u|−2 (5.9) and the assumption
u ≥ εH for u ∈ PH .

To prove the other bounds, we first sum over u ∈ PL in (5.14) to have

|�|−1
∑
u∈PL

Q�(u) ≤ |�|−1
∑
u∈PL

(ρλu)
2

1 − (ρλu)2
(1 + ρ3/4), (5.33)

where we have bounded the factor ρmc/εH in the error term by ρ3/4.
Let h(k) = √

1 + 4g0|k|−2 and we can rewrite λ as

ρλ√
ρk = 1 − h(k)

1 + h(k)
. (5.34)

Recall for any continuous function F on R
3, we have

1

Ld

∑
p∈�∗

F(p) = 1

|�|
∑
p∈�∗

F(p) →
∫

R3

d3p

(2π)3
F(p).

Thus we have

lim
ρ→0

|�|−1ρ−3/2

(∑
u∈PL

(ρλu)
2

1 − (ρλu)2

)
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= lim
ρ→0

1

(2π)3

∫
εL≤|k|≤η−1

L

(h(k) − 1)2

4h(k)
dk3 + O(|�|−1/3). (5.35)

The last error comes from replacing the summation by integral.
Due to the choices of εL, ηL, we can continue the computation as

lim
ρ→0

(
1

(2π)3

∫
εL≤|k|≤η−1

L

(h(k) − 1)2

4h(k)
dk3

)
+ O(|�|−1/3)

= 1

3π2
g

3/2
0 + O(ρη) + O(|�|−1/3). (5.36)

This proves (5.31) since L = ρ−25/24.
Similarly, for u ∈ PI , we have

lim
ρ→0

|�|−1ρ−3/2

(∑
u∈PI

(ρλu)
2

1 − (ρλu)2

)

≤ lim
ρ→0

1

(2π)3

∫
η−1
L

≤|k|≤∞

(h(k) − 1)2

4h(k)
dk3 + O(|�|−1/3). (5.37)

This proves (5.29) and concludes Proposition 5.4. �

As a corollary to the proof, we have the following estimates.

Corollary 5.1

lim
n→∞ lim

ρ→0
|�|−1ρ−3/2

(∑
u∈PL

n∑
m=0

(ρλu)
2m

)
= g

3/2
0

3π2
. (5.38)

Proof From the previous proof, we only need to prove the tail terms vanishes. Recall
|ρλu| ≤ 1 − const. εL < 1 in (5.9). Thus we have

lim
n→∞ lim

ρ→0
|�|−1ρ−3/2

(∑
u∈PL

∞∑
m=n+1

(ρλu)
2m

)

≤ lim
n→∞ lim

ρ→0
|�|−1ρ−3/2

(∑
u∈�∗

(ρλu)
2n+2

1 − (ρλu)2

)

≤ lim
ρ→0

1

(2π)3

∫
R3

H(2n)dk3 + O(|�|−1/3), (5.39)

where

H(2n) = (h(k) − 1)2( 1−h(k)

1+h(k)
)2n

4h(k)
.

By Lebesgue monotone convergence theorem, we have that H(2n) converges to zero. This
proves the corollary. �
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We note that (5.28) also shows that, for u ∈ PH , Q�({u,m}) is exponentially small with
m, i.e.,

Q�({u,m}) ≤ (const. |λu|ρ2|u|−2)m. (5.40)

Furthermore, using similar method, one can easily generalize this result to: for u,v ∈ PH

and u + v �= 0

Q�({u,m}, {v,n}) ≤ (
const. |λu|ρ2ε−2

H

)m(
const. |λv|ρ2ε−2

H

)n
, (5.41)

which implies, for u,v ∈ PH and u + v �= 0, the following inequality:

Q�(u, v) ≤ const. |λuλv|ρ4ε−4
H . (5.42)

5.2 Proof of Lemma 5.3: Upper Bound

Proposition 5.4 states that the density of particles with momenta in PI and PH are much
smaller than ρ3/2. And it implies an upper bound on the density of particles with momenta
in PL. We now prove a matching lower bound

∑
u∈PL

Q�(u) ≥
(

1

3π2
g

3/2
0 − ε

)
ρ3/2� (5.43)

for ρ small enough. Since the total number of particles is fixed, this will provide a upper
bound on the number of particles in the condensate and hence proves the upper bound part
of Lemma 5.3.

We start with the following lemma, which bounds the average number of particles in the
condensate under the condition that there are at most k particles with momentum u.

Proposition 5.5 For u ∈ PI and for any k fixed with 0 ≤ k ≤ mc (mc defined in (3.8)), we
have, for ρ small enough,

∑k

i=0 Q�(0|{u, i})Q�({u, i})∑k

i=0 Q�({u, i}) ≥ N − const.Nρ1/2mc. (5.44)

Proof By (5.22), the contribution of α ∈ Ma
u to Q�({u,m}) for 1 ≤ m ≤ mc is of lower

order when compared with the contribution of α ∈ Ms
u. The ratio of the contributions from

α ∈ Ms
u between Q�({u,m}) and Q�({u,m − 1}) is estimated in (5.26). Together with the

upper bound on |λu| in (5.9) and the choices of εL, εH , we have for ρ small enough,

Q�({u,m})
Q�({u,m − 1}) ≤ (

ρ2λ2
u

)(
1 + const.

mcρ

εH

)
≤

(
1 − const.

(
εL − mcρ

εH

))
< 1. (5.45)

Hence Q�({u,m}) is monotonic decrease in m. We thus have for 0 ≤ k ≤ mc ,

k∑
i=0

Q�({u, i}) ≥ k + 1

mc + 1

mc∑
i=0

Q�({u, i}) = k + 1

mc + 1
, (5.46)

where the last identity is the normalization of the state � .
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By definition of Q�(0|{u, i}) and (5.32), we have

mc∑
i=0

Q�(0|{u, i})Q�({u, i}) = Q�(0) ≥ N − const.Nρ1/2.

On the other hand, for any m, Q�(0|{u,m}) ≤ N . Hence, the numerator on the left side of
(5.44) can be bounded by:

k∑
i=0

Q�(0|{u, i})Q�({u, i})

=
mc∑
i=0

Q�(0|{u, i})Q�({u, i}) −
mc∑

i=k+1

Q�(0|{u, i})Q�({u, i})

≥ N − const.Nρ1/2 − N

mc∑
i=k+1

Q�({u, i})

= N

k∑
i=0

Q�({u, i}) − const.Nρ1/2, (5.47)

where we have used
∑mc

i=0 Q�({u, i}) = 1 in the last identity. Finally, we divide (5.47) by∑k

i=0 Q�({u, i}) and use (5.46) to conclude (5.44). �

Return to the proof of (5.43) for u ∈ PL. Since Auβ is a one to one map (not necessarily
surjective), we have

mc∑
i=1

Q�({u, i}) ≥
mc−1∑

β(u)=0

|f (Auβ)|2. (5.48)

From (5.5) and (5.6), the right hand side is bounded below by

λ2
u|�|−2

mc−1∑
β(u)=0

(β(0)2 − β(0))|f (β)|2. (5.49)

By Jensen’s inequality and β(0) ≤ N , it is bounded below by

λ2
u|�|−2

((∑mc−1
β(u)=0 β(0)|f (β)|2∑mc−1

β(u)=0 |f (β)|2
)2

− N

) mc−1∑
β(u)=0

|f (β)|2. (5.50)

By definition,
∑mc−1

β(u)=0 β(0)|f (β)|2∑mc−1
β(u)=0 |f (β)|2 =

∑mc−1
i=0 Q�(0|{u, i})Q�({u, i})∑mc−1

i=0 Q�({u, i}) . (5.51)

The term on the right hand side can be estimated by Proposition 5.5. Combining all estimates
up to now and we obtain

mc∑
i=1

Q�({u, i}) ≥ ((ρ − ρ5/4)λu)
2

mc−1∑
i=0

Q�({u, i}). (5.52)
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Finally, using (5.46), we have

mc∑
i=1

Q�({u, i}) ≥ ((ρ − ρ5/4)λu)
2

(
1 − 1

mc + 1

)
. (5.53)

We can generalize this result as follows. For m ≥ 1, we first iterate the argument in
proving (5.48) and (5.49) to have

λ2m
u |�|−2m

mc−m∑
β(u)=0

(β(0) − 2m)2m |f (β)|2 ≤
mc∑

i=m

Q�({u, i}). (5.54)

Again, using Jensen’s inequality, Proposition 5.5, and (5.46), we have

mc∑
i=m

Q�({u, i} ≥ ((ρ − ρ5/4)λu)
2m

(
1 − m

mc + 1

)
. (5.55)

So with the fact mc = ρ−η, Q�(u) can be bounded as follows,

Q�(u) =
∞∑

m=1

∞∑
i=m

Q�({u, i}) ≥
mc∑

m=1

((ρ − ρ5/4)λu)
2m

(
1 − m

mc + 1

)

≥ (1 − ρη/2)

√
mc+1∑
i=1

(ρλu)
2i . (5.56)

Now the summation over u ∈ PL was carried out in Corollary 5.38 and we have proved
(5.43). Since the total number of particle is N , the bounds on Q�(0) follows from (5.43)
and Proposition 5.4. This concludes Lemma 5.3.

The previous method can be applied to yield the following estimates which will be useful
later on.

Lemma 5.5 For u ∈ PL and ρ sufficiently small, the following two bounds hold:

mc∑
m=mc−1

mQ�({u,m}) ≤ ρ2λ2
u

1 − ρ2λ2
u

ρη/2, (5.57)

∑
α(u)≤mc−2

|f (α)|2α(0)2α(u) ≥ N2 ρ2λ2
u

1 − ρ2λ2
u

(1 − 2ρη/2 − (ρλu)
2
√

mc ). (5.58)

Proof Because Q�({u,m}) is monotonic decrease in m, we have

mc∑
m=mc−1

mQ�({u,m}) ≤ const.

mc

mc∑
m=1

mQ�({u,m}) = const.

mc

Q�(u). (5.59)

Together with the upper bound (5.13) on Q�(u), we have proved (5.57).
To prove (5.58), we follow the argument in (5.54) to have, for m ≤ mc − 2,

λ2m
u |�|−2m

mc−m−2∑
β(u)=0

(β(0) − 2m)2m+2 |f (β)|2 ≤
mc−2∑
i=m

Q�(0,0|{u, i})Q�({u, i}).
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Again, using Jensen’s inequality, Proposition 5.5 and (5.46), we have

∑
α(u)≤mc−2

|f (α)|2α(0)2α(u) =
mc−2∑
m=0

mc−2∑
i=m

Q�(0,0|{u, i})Q�({u, i})

≥ (1 − 2ρη/2)

√
mc∑

i=1

(ρλu)
2iN2. (5.60)

This implies (5.58). �

Lemma 5.3 can be extended to the following estimate:

Lemma 5.6 With the assumptions in Lemma 5.3, Q�(0,0) satisfies the estimate

(�ρ−ε)
2 ≤ Q�(0,0) ≤ (�ρε)

2. (5.61)

Proof By Jensen’s inequality and Lemma 5.3, we have the lower bound

Q�(0,0) ≥ [Q�(0)]2 ≥ (�ρ−ε)
2.

For the upper bound, we start with

Q�(0,0) = N2 − 2N
∑
u�=0

Q�(u) +
∑
u,v �=0

Q�(u, v)

≤ (Q�(0))2 +
∑
u,v �=0

Q�(u, v). (5.62)

Since the number of particles with momentum u ∈ PL is at most mc ,

∑
u∈PL,v �=0

Q�(u, v) ≤
(∑

u∈PL

mc

)(∑
v �=0

Q�(v)

)
. (5.63)

By definition of PL, we have
∑

u∈PL
mc = mcη

−3
L ρ3/2�. The last factor in (5.63) can be

estimated by Proposition 5.4. Thus we have

∑
u∈PL,v �=0

Q�(u, v) = o(ρ5/2|�|2). (5.64)

For the terms
∑

u∈PI ∪PH ,v �=0, the upper bound on the total number of particles in PI and PH

in Proposition 5.4 yields that

∑
u∈PI ∪PH ,v �=0

Q�(u, v) ≤
∑

u∈PI ∪PH

Q�(u)N = o(ρ5/2|�|2). (5.65)

Inserting (5.64), (5.65) into (5.62) and using the upper bound in Lemma 5.3, we obtain the
upper bound on Q�(0,0). �



474 H.-T. Yau, J. Yin

6 Estimates on Kinetic Energy

In this section, we will prove the kinetic energy estimate Lemma 4.1. This lemma follows
immediately from summing the estimates ((6.2)–(6.4)) of the next lemma.

Lemma 6.1 In the limit ρ → 0, Q�(u, v) can be bounded above by

lim
ρ→0

(
ρ−5/2|�|−2

∑
u,v �=0

Q�(u, v)

)
≤ 0. (6.1)

Furthermore,
∑

u2Q�(u) can be bounded above as follows

lim
ρ→0

(
ρ−5/2|�|−1

∑
u∈PI

u2(Q�(u) − (ρ0λu)
2)

)
≤ 0, (6.2)

lim
ρ→0

(
ρ−5/2|�|−1

∑
u∈PL

u2(Q�(u) − (ρ0wu)
2)

)
≤ − 8

5π2
g

5/2
0 , (6.3)

lim
ρ→0

(
ρ−5/2

|�|
∑
u∈PH

u2

(
Q�(u) −

(
ρ2

0 + 4g
3/2
0

3π2
ρ

5/2
0

)
λ2

u

))
≤ 0. (6.4)

Proof The bound (6.1) was proved in (5.64) and (5.65). We now prove (6.2) concerning
u ∈ PI .

The upper bound of Q�(u) in (5.13) can be rewritten as

Q�(u) ≤ (ρλu)
2 + (ρλu)

4

1 − (ρλu)2
. (6.5)

Recall ρ0 = ρ(1+O(
√

ρ)) and the bounds on λ in (5.9). Since ρ1/2 � |u| � 1 when u ∈ PI ,
see Definition 3.1, the error term of the last bound can be estimated by

lim
ρ→0

|�|−1ρ−5/2
∑

u:ρ1/2�|u|�1

u2 (ρλu)
4

1 − (ρλu)2
= 0. (6.6)

This proves (6.2).
We now prove (6.3) concerning u ∈ PL. Following the strategy of the previous argument,

we first use 0 ≥ 1 − (ρ0λu)
2 ≥ const. εL in (5.9) and (5.10) to rewrite the upper bound of

Q�(u) in (5.14) as

Q�(u) ≤ (ρλu)
2

1 − (ρλu)2
+ const.

ρmc

εH εL

. (6.7)

The error terms are negligible in the sense that

∑
u∈PL

u2 ρmc

εHεL

= o(ρ5/2�).

Since wu = gu|u|−2, ρ0 − ρ = O(ρ3/2) and |gu − g0| ≤ const. |u|, we have

lim
ρ

∑
u∈PL

u2

((
ρg0

u2

)2

− (ρ0wu)
2

)
ρ−5/2|�|−1 = 0. (6.8)
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Summarize what we have proved, we have the following inequality:

lim
ρ

∑
u∈PL

u2(Q�(u) − (ρ0wu)
2)ρ−5/2|�|−1

≤ lim
ρ

∑
u∈PL

u2

(
(ρλu)

2

1 − (ρλu)2
−

(
ρg0

u2

)2)
ρ−5/2|�|−1. (6.9)

Let u = √
ρk and h(k) = √

1 + 4g0|k|−2 as in (5.34). Then the right hand side of (6.9) is
estimated as

1

(2π)3

∫
εL≤|k|≤η−1

L

k2

(
1 + 2g0|k|−2

2h(k)
− 1 + 2(g0|k|−2)2

2

)
dk3 + O(|�|−1/3).

Direct calculation yields that

1

(2π)3

∫
k∈R3

k2

(
1 + 2g0|k|−2

2h(k)
− 1 + 2(g0|k|−2)2

2

)
dk3 = − 8

5π2
g

5/2
0 . (6.10)

Inserting this result into (6.9), we obtain the desired result (6.3).
Finally, we prove (6.4) concerning u ∈ PH . Recall the bound (5.28) on the ratio of

Q�({u,m})/Q�({u,m − 1}). Since |λu| ≤ g0|u|−2 (5.9) and u ∈ PH , the factor on the right
hand side of (5.28) can be bounded by ρ3/2. Thus we have

Q�(u) =
∑
m

mQ�({u,m}) ≤
∑
m≥1

Q�({u,m})(1 + O(ρ3/2)). (6.11)

We now repeat the argument from (5.27) to (5.28) but refine the proof by using Proposi-
tion 5.4. Hence for any u ∈ PH , we have

∑
m≥1

Q�({u,m}) ≤
∑

β

(
β(0)2

|�|2 λ2
u +

∑
v∈PL

4
β(0)

|�|
β(v)

|�| |λuλ−u+v|
)

|f (β)|2

≤ |�|−2λ2
uQ�(0,0) +

∑
v∈PL

ρ|�|−1 (4Q�(v) |λuλ−u+v|) . (6.12)

By mean value theorem and λk = −gk|k|−2 for k ∈ PH , we have that ∃ũ ∈ R
3 : |ũ − u| ≤ v

s.t.

|λ−u+v − λ−u| ≤ const.

(∣∣∣∣∂gũ

∂ũ

∣∣∣∣ũ−2 + |gũ|ũ−3

)
|v|. (6.13)

From the estimates (5.9) on λu and u ∼ ũ, we obtain:

|λu||λ−u+v − λ−u| ≤ const.

(∣∣∣∣∂gũ

∂ũ
gu

∣∣∣∣u−4 + |gũ||gu|u−5

)
|v|

≤ const. |u|−2ε−3
H G(u)|v|, (6.14)

where by Schwarz inequality, we have:

G(u) = max
u′ :|u′−u|≤η−1

L
ρ1/2

{∣∣∣∣∂gu′

∂u′

∣∣∣∣
2

+ |gu′ |2
}
. (6.15)
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We note that it is easy to check
∑

u∈PH
G(u)/� < ∞. Together with the results on the total

number of PL particles in (5.3), we obtain that, for ρ small enough and u ∈ PH , the last term
in (6.12) is bounded above by

λ2
uρ

5/2

(
4g

3/2
0

3π2
+ ρη

)
+ const. ρ3

u2ε3
HηL

G(u). (6.16)

The Qψ(0,0) in the last second term of (6.12) is bounded by Lemma 5.6. Inserting (6.16)
and (6.12) into (6.11) and using λ2

u = w2
u for u ∈ PH , we obtain that,

lim
ρ→0

∑
u∈PH

u2

(
Q�(u) − (ρ0wu)

2

(
1 +

[
4g

3/2
0

3π2

]
ρ

1/2
0

))
ρ−5/2

|�| ≤ 0. (6.17)

This proves (6.4). �

7 Estimates on Pair Interaction Energies

7.1 Proof of Lemma 4.2

First, with the fact a†
ua

†
uauau ≤ (a†

uau)
2 and 0 ≤ |Vu| ≤ V0 for any u, we can bound HS1 as

follows

HS1 ≤ V0�
−1

∑
u,v

a†
uaua

†
vav + �−1

∑
u�=v

Vu−va
†
uaua

†
vav

≤ V0Nρ + V0�
−1

∑
u�=v

a†
ua

†
vavau = 2V0Nρ − V0�

−1
∑

u

(a†
uau)

2. (7.1)

Therefore we can bound the expectation value 〈HS1〉:

〈HS1〉� ≤ 2V0Nρ − V0�
−1

∑
u

Q�(u,u) ≤ 2V0Nρ − V0�
−1Q�(0,0). (7.2)

By the lower bounds of Q�(0,0) in Lemma 5.6 and the definition of ρ0 in (3.14), we have
proved Lemma 4.2.

7.2 Proof of Lemma 4.3

We start the proof with the following identity for 〈�|a†
u1

a†
u2

au3au4 |�〉.

Lemma 7.1 For any fixed u1,2,3,4 ∈ �∗ and α ∈ M , define T (α) to be the state

|T (α)〉 = Ca†
u1

a†
u2

au3au4 |α〉, (7.3)

where C is the positive normalization constant when |T (α)〉 �= 0. Then we have

〈�|a†
u1

a†
u2

au3au4 |�〉 =
∑
α∈M

f (α)f (T (α))

√
〈α|a†

u4a
†
u3au2au1 |a†

u1a
†
u2au3au4 |α〉. (7.4)
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The map T depends on u1,2,3,4 and in principle it has to carry them as subscripts. We
omit these subscripts since it will be clear from the context what they are.

Proof For any u1,2,3,4 ∈ �∗ fixed, by definition of � , we have

〈�|a†
u1

a†
u2

au3au4 |�〉 =
∑

α,β∈M

f (α)f (β)〈β|a†
u1

a†
u2

au3au4 |α〉. (7.5)

By definition of M , we have

〈β|a†
u1

a†
u2

au3au4 |α〉 �= 0 ⇒ β = T (α). (7.6)

Since |T (α)〉 is normalized, the identity in Lemma 7.1 is obvious. �

Lemma 4.3 follows from the following lemma and λu = −wu for u ∈ PH ∪ PI . Notice
that the factor 2 in the estimate of Lemma 4.3 is due to the complex conjugate in the defini-
tion of HS2. Similar factor also appears in Lemma 4.5.

Lemma 7.2

lim
mc,ρ

∑
u∈PI ∪PH

(〈Vu|�|−1a†
ua

†
−ua0a0〉 − ρ2

0Vuλu)ρ
−5/2|�|−1 = 0, (7.7)

lim
mc,ρ

∑
u∈PL

(〈Vu|�|−1a†
ua

†
−ua0a0〉 + ρ2

0Vuwu)ρ
−5/2|�|−1 ≤ V0g

3/2
0

π2
. (7.8)

Proof We first prove (7.7) concerning with u ∈ PI ∪ PH . By Lemma 7.1, we have

〈Vu|�|−1a†
ua

†
−ua0a0〉 = Vu|�|−1

∑
α:α∈M,Auα∈M

f (α)f (Auα)

×
√

(α(0)2 − α(0))(α(u) + 1)(α(−u) + 1). (7.9)

The case that α ∈ M and Auα /∈ M can only happen when α(0) = 0 or 1 and thus has no
contribution. From the relation between f (α) and f (Auα) in (5.4), we have

(7.9) = λuVu|�|−2
∑
α∈M

|f (α)|2α(0)(α(0) − 1)
√

(α(u) + 1)(α(−u) + 1). (7.10)

By the Schwarz inequality, we have
∣∣∣∣
∑

α

α(0)(α(0) − 1)
(√

(α(u) + 1)(α(−u) + 1) − 1
)|f (α)|2

∣∣∣∣

≤ N2

∣∣∣∣
∑

α

α(u) + α(−u)

2
|f (α)|2

∣∣∣∣ = N2Q�(u). (7.11)

Inserting (7.11) into (7.10) and summing over u ∈ PI ∪ PH of (7.10), we obtain

∑
u∈PI ∪PH

(〈Vu|�|−1a†
ua

†
−ua0a0〉 − Vuλu(Q�(0,0) − Q�(0)))
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≤ const. ρ2|�|
∑

u∈PI ∪PH

Q�(u). (7.12)

From the upper bound of
∑

Q�(u) in (5.29), the right hand side of above inequality is
bounded by (o(ρ5/2�)). By the bounds on Q�(0,0) in Lemma 5.6, we have proved (7.7).

To prove (7.8) concerning u ∈ PL, we note that (7.9) still holds, but Auα /∈ M when
α∗(u) = mc . Therefore, for u ∈ PL, (7.9) is equal to

Vu|�|−1
∑

α:α∈M,α∗(u)<mc

f (α)f (Auα)
√

α(0)(α(0) − 1)(α(u) + 1)(α(−u) + 1).

We can express f (Auα) in terms of f (α); in both cases: α ∈ Ms
u or α ∈ Ma

u , we have the
following identity:

f (α)f (Auα)
√

(α(u) + 1)(α(−u) + 1)

= λu|f (α)|2|�|−1
√

α(0)(α(0) − 1)(α∗(u) + 1). (7.13)

Hence, for u ∈ PL,

(7.9) =
∑

α:α∈M,α∗(u)<mc

λuVu|�|−2|f (α)|2α(0)(α(0) − 1)(α∗(u) + 1). (7.14)

We note λu < 0 and Vu ≈ V0 > 0, for u ∈ PL. For any α ∈ M , α∗(u)−α(u) ≤ 1 by definition.
Hence we can replace the summation α∗(u) < mc by α(u) ≤ mc −2 to have an upper bound.
Summing over u ∈ PL of (7.14), we have

〈∑
u∈PL

Vu|�|−1a†
ua

†
−ua0a0

〉

≤
∑
u∈PL

∑
α(u)≤mc−2

λuVu|�|−2|f (α)|2α(0)(α(0) − 1)α(u)

+
∑
u∈PL

∑
α(u)≤mc−2

λuVu|�|−2|f (α)|2α(0)(α(0) − 1). (7.15)

The last term is equal to

∑
u∈PL

λuVu|�|−2(Q�(0,0) − Q�(0))

−
∑
u∈PL

mc∑
i=mc−1

λuVu|�|−2(Q�(0,0|u, i)Q�(u, i)). (7.16)

Since Q�(0,0|u, i) ≤ N2, the last term in (7.16) is bounded from above by

∑
u∈PL

mc∑
i=mc−1

const. |λuρ
2Q�(u, i)| ≤ o(ρ5/2�), (7.17)

where we have used (5.45). For the first term of (7.16), we can bound it by using Lemma 5.6.
We now use (5.58) to estimate the first term on the right hand side of (7.15). Combining these
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results, we have

〈∑
u∈PL

Vu|�|−1a†
ua

†
−ua0a0

〉
≤

∑
u∈PL

λuVuρ
2 (ρλu)

2

1 − (ρλu)2
(1 − 2ρ

η
2 − (ρλu)

2
√

mc )

+
∑
u∈PL

λuVuρ
2
0 + o(ρ5/2�). (7.18)

Since |λuρ| ≤ 1 and |Vu| ≤ V0, we have

∑
u∈PL

|λuVu|ρ2 (ρλu)
2

1 − (ρλu)2
≤

∑
u∈PL

V0ρ
(ρλu)

2

1 − (ρλu)2
≤ const. ρ5/2�. (7.19)

By (5.39), we have

∑
u∈PL

|λuVu|ρ2 (ρλu)
2

1 − (ρλu)2
(ρλu)

2
√

mc ≤ o(ρ5/2�). (7.20)

Inserting (7.19)–(7.20) into (7.18), we have

∑
u∈PL

(〈Vu|�|−1a†
ua

†
−ua0a0〉 + wuVuρ

2
0 )

≤
∑
u∈PL

(λu + wu)Vuρ
2
0 +

∑
u∈PL

Vuρ
2 λ3

uρ
2

1 − ρ2λ2
u

+ o(ρ5/2�). (7.21)

Since |gu − g0| + |Vu − V0| ≤ const. |u|, we can replace wu and Vu by g0|u|−2 and V0 in last
inequality so that the rhs of (7.21) is bounded by

V0ρ
2
0

∑
u∈PL

(λu + g0|u|−2) + V0ρ
2
∑
u∈PL

λ3
uρ

2

1 − ρ2λ2
u

+ o(ρ5/2�)

= V0ρ
2
0

∑
u∈PL

(
λu + g0|u|−2 + λ3

uρ
2

1 − ρ2λ2
u

)
+ o(ρ5/2�). (7.22)

Let u = √
ρk. We have

lim
ρ→0

∑
u∈PL

(
λu + g0|u|−2 + λ3

uρ
2

1 − ρ2λ2
u

)
ρ−1/2|�|−1

= lim
ρ→0

1

(2π)3

∫
εL≤|k|≤η−1

L

g0|k|−2

(
1 − 1√

1 + 4g0|k|−2

)
dk3

= π−2. (7.23)

So the leading term of right hand side of (7.21) is equal to V0g
3/2
0 π−2(ρ5/2�). This com-

pletes the proof for (7.8). �
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7.3 Proof of Lemma 4.4

Define P (u, v) by

P (u, v) ≡
∑
γ∈M

f (Auγ )f (Avγ )
√

(γ (u) + 1)(γ (−u) + 1)(γ (v) + 1)(γ (−v) + 1).

(7.24)
Recall f (α) = 0 when |α〉 = 0 or α /∈ M .

Lemma 7.3 Let u, v ∈ �∗, u �= v and u,v �= 0.
If one of u and v ∈ PL ∪ PI , we have the following identity.

〈�|a†
ua

†
−uava−v|�〉 = P (u, v). (7.25)

If u,v ∈ PH , we have

|〈�|a†
ua

†
−uava−v|�〉 − P (u, v)| ≤ const. ρ4 |λuλv| . (7.26)

Proof We first prove (7.25) and assume without loss of generality that v ∈ PL ∪ PI . Using
Lemma 7.1, we rewrite 〈a†

ua
†
−uava−v〉� as

〈a†
ua

†
−uava−v〉� =

∑
α∈M

f (α)f (T (α))
√

(α(u) + 1)(α(−u) + 1)α(v)α(−v). (7.27)

Here |T (α)〉 = Ca†
ua

†
−uava−v|α〉 and C is positive normalization constant. Since v ∈ PL ∪PI

and α(v) > 0, α(−v) > 0, by definition of M there exists unique γ ∈ M such that

Avγ = α. (7.28)

Therefore, with |T (α)〉 = Ca†
ua

†
−uava−v|α〉, we have

T (α) = Auγ. (7.29)

Furthermore, by (7.28), we have

γ (u) = α(u) and γ (v) = α(v) + 1. (7.30)

Inserting (7.28), (7.29) and (7.30) into (7.27), we have proved (7.25).
To prove (7.26), we define Nv as the following set:

Nv ≡ {α ∈ M|∀γ ∈ M, Avγ �= α} . (7.31)

Following the previous argument, we have

|〈a†
ua

†
−uava−v〉� − P (u, v)| ≤

∑
α∈Nv,β∈Nu

|f (α)f (β)〈β|a†
ua

†
−uava−v|α〉|. (7.32)

The right hand side can be divided into two cases:

∑
α∈Nv,β∈Nu,β(u)β(−u)≥α(v)α(−v)

|f (α)f (β)〈β|a†
ua

†
−uava−v|α〉|
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+
∑

α∈Nv,β∈Nu,α(v)α(−v)>β(u)β(−u)

|f (α)f (β)〈β|a†
ua

†
−uava−v|α〉|. (7.33)

By definition of f , if 〈β|a†
ua

†
−uava−v|α〉 �= 0, we have |f (β)| = |λu/λvf (α)|, β(u) = α(u) + 1

and β(−u) = α(−u) + 1. Denote by Nv,u ⊂ Nv the set

Nv,u ≡ {α ∈ Nv : (α(u) + 1)(α(−u) + 1) ≤ α(v)α(−v)}. (7.34)

Hence we can bound (7.33) by

∣∣∣∣
∑

α∈Nv,β∈Nv

f (α)f (β)〈β|a†
ua

†
−uava−v|α〉

∣∣∣∣

≤
∑

α∈Nv,u

∣∣∣∣λu

λv

∣∣∣∣|f (α)|2α(v)α(−v) +
∑

β∈Nu,v

∣∣∣∣λv

λu

∣∣∣∣|f (β)|2β(u)β(−u). (7.35)

Now we bound
∑

α∈Nv,u
|f (α)|2α(v)α(−v). If α ∈ Nv and α(v)α(−v) > 0, then with

Proposition 5.3, there exist α′, v′ ∈ PL with α′ ∈ Ms
v′ such that

α = Av′, v− v′
2 α′. (7.36)

If α′ /∈ Nv , then there exists γ ′ s.t. Avγ ′ = α′. Hence

Av(Av′, v− v′
2 γ ′) = α ⇒ α /∈ Nv

and we have a contradiction. Hence we have α′ ∈ Nv and α′(−v) > 0. Again by Proposi-
tion 5.3, there exist α′′, v′′ ∈ PL such that α′′ ∈ Ms

v′′

α′ = Av′′,−v− v′′
2 α′′. (7.37)

Combining (7.36) and (7.37) and using (5.7), we express f (α) in terms of f (α′′), α′′(v′),
α′′(v′′) and α′′(0) and λ’s. By definition of M , α′′(̃v) ≤ mc for any ṽ ∈ PL and we obtain

|f (α)|2 ≤ const. ρ2m2
c |�|−2λ2

v |λ−v+v′λv+v′′ |f (α′′)2. (7.38)

By (5.11) and −v + v′, v + v′′ ∈ PH , we have

|f (α)|2 ≤ const. ρ2m2
cλ

2
vε

−4
H f (α′′)2. (7.39)

Summing over v′, v′′ ∈ PL and α′′ ∈ M , we obtain

∑
α∈Nv,α(v)+α(−v)≥2

|f (α)|2 ≤ const. ρ5η−6
L m2

cλ
2
vε

−4
H ≤ (ρ2λv)

2. (7.40)

Similarly, one can prove that

∑
α∈Nv,α(v)+α(−v)≥m

|f (α)|2 ≤ (ρ2λv)
m. (7.41)
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Hence, we can obtain

∑
α∈Nv,u

∣∣∣∣λu

λv

∣∣∣∣|f (α)|2α(v)α(−v) ≤
∑
α∈Nv

∣∣∣∣λu

λv

∣∣∣∣|f (α)|2α(v)α(−v) ≤ 2ρ4 |λuλv| .

Inserting this result into (7.35) and using the symmetry, we obtain

∣∣∣∣
∑

α∈Nv,β∈Nv

f (α)f (β)〈β|a†
ua

†
−uava−v|α〉

∣∣∣∣ ≤ const. ρ4 |λuλv| . (7.42)

This completes the proof. �

Using this lemma, we can estimate the term 〈a†
ua

†
−uava−v〉 as follows.

Lemma 7.4 For u,v ∈ PI ∪ PH ,
∣∣∣∣〈a†

ua
†
−uava−v〉 − λuλv

Q�(0,0) − Q�(0)

|�|2
∣∣∣∣

≤ |λuλv|ρ2((Q�(u, v) + Q�(u,−v)) /2 + Q�(u) + Q�(v) + const. ρ2). (7.43)

For u ∈ PL, v ∈ PI ∪ PH ,

∣∣∣∣〈a†
ua

†
−uava−v〉 − λuλv

(
Q�(0,0) − Q�(0)

|�|2 + ρ4λ2
u

1 − ρ2λ2
u

)∣∣∣∣
≤ |λuλv|ρ2

(
(Q�(u, v) + Q�(u,−v)) /2 + 2Q�(v)

+ 4ρ2λ2
u

1 − ρ2λ2
u

(ρη/2 + (ρλu)
2
√

mc )

)
. (7.44)

For u,v ∈ PL

〈a†
ua

†
−uava−v〉 − λuλv

Q�(0,0) − Q�(0)

|�|2
≤ |λuλv|ρ2 (Q�(u, v) + 2Q�(u) + 2Q�(v) + 3) . (7.45)

We note that there is no absolute value on the left hand side of the inequality when u,v ∈ PL.

Proof We first prove (7.43) concerning u,v ∈ PI ∪ PH . By Lemma 7.3, we have

|〈a†
ua

†
−uava−v〉 − P (u, v)| ≤ const. ρ4 |λuλv| , (7.46)

where P (u, v) is defined in (7.24). By the property of f in (5.4), we can rewrite P (u, v) as

∑
γ∈M,Auγ∈M,Avγ∈M

λuλv|f (γ )|2 γ (0)2 − γ (0)

|�|2

× √
(γ (u) + 1)(γ (−u) + 1)(γ (v) + 1)(γ (−v) + 1). (7.47)
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The situation that γ ∈ M and Au(v)γ /∈ M can only happen when γ (0) = 1 or 0. But in this
case, γ (0)2 − γ (0) = 0 and the term vanishes. Hence the summation of γ in (7.47) can be
replaced by

∑
γ∈M . Therefore, for u,v ∈ PI ∪ PH , we have

∣∣∣∣P (u, v) − λuλv

Q�(0,0) − Q�(0)

|�|2
∣∣∣∣

≤
∑
γ∈M

|λuλv| |f (γ )|2 γ (0)2

|�|2

× |√(γ (u) + 1)(γ (−u) + 1)(γ (v) + 1)(γ (−v) + 1) − 1|. (7.48)

From γ (0) ≤ N and the Schwarz inequality, the rhs is bounded by

∑
γ∈M

|λuλv| |f (γ )|2ρ2

[(
γ (u) + γ (−u)

2
+ 1

)(
γ (v) + γ (−v)

2
+ 1

)
− 1

]
. (7.49)

By symmetry, we have Q�(u) = Q�(−u) and Q�(u, v) = Q�(−u,−v). So we have

(7.49) ≤ |λuλv|ρ2

(
1

2
(Q�(u, v) + Q�(u,−v)) + Q�(u) + Q�(v)

)
. (7.50)

Together with (7.46), we have proved (7.43).
We now prove (7.44) concerning u ∈ PL, v ∈ PI ∪ PH . Following arguments in the pre-

vious paragraph and using (5.5) and (5.6), we can rewrite P (u, v) as

∑
γ∈M,Auγ∈M

λuλv|f (γ )|2 γ (0)2 − γ (0)

|�|2

×√
(γ ∗(u) + 1)(γ ∗(−u) + 1)(γ (v) + 1)(γ (−v) + 1). (7.51)

Notice that no matter we use (5.5) or (5.6), the final result is the same. For γ ∈ M with
γ (0) ≥ 2, the case Auγ /∈ M can only happen when γ ∗(u) = mc. Hence, the summation of
γ in (7.51) can be replaced by

∑
γ ∗(u)�=mc

. Since γ ∗(u) = γ ∗(−u), for u ∈ PL,v ∈ PI ∪ PH

we have

P (u, v) =
∑

γ ∗(u)�=mc

λuλv|f (γ )|2 γ (0)2−γ (0)

|�|2 (γ ∗(u) + 1)
√

(γ (v) + 1)(γ (−v) + 1). (7.52)

Since γ (0) ≤ N , we have

∣∣∣∣P (u, v) − λuλv

Q�(0,0)−Q�(0)

|�|2 −
∑

γ

λuλv|f (γ )|2 γ (0)2 − γ (0)

|�|2 γ ∗(u)

∣∣∣∣
≤

∑
γ ∗(u)�=mc

|λuλv| |f (γ )|2ρ2(γ ∗(u) + 1)

∣∣∣√(γ (v) + 1)(γ (−v) + 1) − 1
∣∣∣

+
∑

γ ∗(u)=mc

|λuλv| |f (γ )|2ρ2
(
γ ∗(u) + 1

)
. (7.53)
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We can replace
∑

γ ∗(u)�=mc
in the first term of rhs by

∑
γ∈M to have an upper bound. Since√

(γ (v) + 1)(γ (−v) + 1) − 1 ≤ [γ (v) + γ (−v)]/2 and γ ∗(u) ≤ γ (u) + 1, we can bound
the right hand side of (7.53) by

|λuλv|ρ2

[
1

2
(Q�(u, v) + Q�(u,−v)) + 2Q�(v) +

∑
γ (u)≥mc−1

2|f (γ )|2γ (u)

]
. (7.54)

The last term is bounded in (5.57), i.e.,

∑
γ (u)≥mc−1

|f (γ )|2γ (u) ≤ ρ2λ2

1 − ρ2λ2
ρη/2. (7.55)

The estimate (7.44) follows from last three inequalities and (7.51), provided that we can
establish the following estimate

∑
γ

|f (γ )|2 γ (0)2 − γ (0)

|�|2 γ ∗(u) = ρ4λ2
u

(1 − (ρλu)2)
[1 + O(ρη/2) + O((ρλu)

2
√

mc )]. (7.56)

To prove this, we first divide the summation of γ into γ ∈ Ms
u and γ ∈ Ma

u . For the case
γ ∈ Ms

u, we have

∑
γ∈Ms

u

|f (γ )|2 γ (0)2 − γ (0)

|�|2 γ ∗(u) ≤ ρ2Q�(u) ≤ ρ2 (ρλu)
2

(1 − (ρλu)2)
(1 + ρ2/3), (7.57)

where we have used (5.14) in the last inequality. For the case γ ∈ Ma
u , using (5.22), we have

∑
γ∈Ma

u

|f (γ )|2 γ (0)2 − γ (0)

|�|2 γ ∗(u) ≤ const. ρ2 ρmc

εH

∑
γ∈Ms

u

|f (γ )|2γ (u)

≤ ρ
8
3

(ρλu)
2

(1 − (ρλu)2)
. (7.58)

This proves the upper bound part of (7.56). The lower bound follows from (5.58) since
γ ∗(u) ≥ γ (u).

Finally, we prove (7.45) concerning u,v ∈ PL. Similar to the previous argument, by (5.5)
and (5.6), we can rewrite P (u, v) as

∑
γ∈M,Auγ∈M,Avγ∈M

λuλv|f (γ )|2 γ (0)2 − γ (0)

|�|2

× √
(γ ∗(u) + 1)(γ ∗(−u) + 1)(γ ∗(v) + 1)(γ ∗(−v) + 1). (7.59)

Since λuλv ≥ 0 and γ ∗(u) = γ ∗(−u), we have for u,v ∈ PL,

P (u, v) − λuλv

Q�(0,0) − Q�(0)

|�|2 ≤
∑
γ∈M

λuλvρ
2
∣∣(γ ∗(u) + 1)(γ ∗(v) + 1) − 1

∣∣ . (7.60)

Using γ ∗ − γ ≤ 1, we have proved (7.45). �
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We now can now prove Lemma 4.4.

Proof Summing over u,v �= 0 of (7.43), (7.44) and (7.45), we obtain that

∑
u,v �=0

Vu−v

|�|2 〈a†
ua

†
−uava−v〉 ≤ A + B + � (7.61)

where

A = Q�(0,0) − Q�(0)

|�|2
∑
u,v �=0

Vu−v

|�|2 λuλv,

B = 2
∑

u∈PL,v∈PI ∪PH

Vu−v

|�|2 λuλv

ρ4λ2
u

1 − ρ2λ2
,

� = 1

|�|2
( ∑

u,v �=0

|Vu−v||λuλv|ρ2Q�(u, v) +
∑

u∈PI ∪PH ,v �=0

4|λuλvVu−v|ρ2Q�(u)

+
∑

u,v∈PL

3|Vu−v||λuλv|ρ2(Q�(u) + 1) +
∑

u,v∈PI ∪PH

const. ρ4|λuλv||Vu−v|

+
∑

u∈PL,v∈PI ∪PH

|λuλv||Vu−v| 4ρ4λ2
u

1 − ρ2λ2
u

(ρη/2 + (λuρ)2
√

mc )

)
. (7.62)

The error term � can be bounded by using the following facts, (1) |ρλu| ≤ 1,
(2) |∑v �=0 λvVu−v| ≤ const.�, (3) |Vu| ≤ V0, (4) |λu| ≤ g0|u|−2 for any u �= 0 and
(5)

∑
u,v |λuVu−vλv| ≤ const. |�|2:

� ≤ const.

|�|2
( ∑

u,v �=0

Q�(u, v) +
∑

u∈PI ∪PH

Q�(u)ρ� +
∑

u,v∈PL

Q�(u) + 1

u2v2
ρ2

+ ρ4|�|2 +
∑
u∈PL

ρ3λ2
u

1 − ρ2λ2
u

�(ρη/2 + (λuρ)2
√

mc )

)
. (7.63)

By (6.1) and (5.2), the first two terms on the right hand side are bounded by o(ρ5/2). Using
the trivial bound Q�(u) ≤ mc for u ∈ PL, the third term is also bounded by o(ρ5/2). By
(7.19) and (7.20), the last term is also o(ρ5/2). Hence the error terms are bounded by � ≤
o(ρ5/2).

We now estimate A and B . Notice that (Q�(0,0)−Q�(0))|�|−2 = ρ2
0 +o(ρ5/2). Hence

we shall replace this factor in A by ρ2
0 . Since λu = −wu for u ∈ PI ∪ PH , we have

∑
u,v �=0

λuλv =
∑
u,v �=0

wuwv − 2
∑

u∈PL,v �=0

(λu + wu)wv +
∑

u,v∈PL

(λu + wu)(λv + wv).

We can now decompose A into

A = ‖w2V ‖1ρ
2
0 + A1 + A2 + A3 + o(ρ5/2) (7.64)
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where

A1 = −2ρ2
0

∑
u∈PL,v∈PI ∪PH

Vu−v

|�|2 (λu + wu)wv,

A2 = −2ρ2
0

∑
u∈PL,v∈PL

Vu−v

|�|2 (λu + wu)wv,

A3 =
∑

u,v∈PL

Vu−v

|�|2 (λu + wu)(λv + wv)ρ
2
0 .

Since |wuρ| ≤ const. ρ|u|−2 ≤ ε−2
L , we have A3 ≤ o(ρ5/2). We can also obtain the simple

estimate A2 ≤ o(ρ5/2).
If we replace ρ2 in B by ρ2

0 , which is equal to ρ2 − O(ρ5/2), we have

B + A1 = −2
∑

u∈PL,v∈PI ∪PH

Vu−v

|�|2 wvρ
2

(
λu

ρ2λ2
u

1 − ρ2λ2
u

+ λu + wu

)
. (7.65)

Using |Vu−v − Vv| ≤ const. |u| for u ∈ PL and v ∈ PI ∪ PH , we can simplify B + A1 as

B + A1 ≤ −2‖V w‖1

|�| ρ2
∑
u∈PL

(
λu

1 − ρ2λ2
u

+ wu

)
+ o(ρ5/2). (7.66)

Since |gu − g0| ≤ const. |u|, we have |wu − g0|u|−2| ≤ const. ρ−1/2ε−1
L . Then we can

replace wu with g0|u|−2 in (7.66). Setting u = ρ1/2k, we have, by definition of λ,

lim
ρ→0

(ρ1/2�)−1
∑
u∈PL

(
λu

1 − ρ2λ2
u

+ g0|u|−2

)

= 1

8π3

∫
k∈R3

g0|k|−2

(√
1 + 4g0|k|−2 − 1√

1 + 4g0|k|−2

)
dk3 = g

3/2
0

π2
. (7.67)

Inserting this result into (7.66) and (7.64), we have proved (4.11). �

8 Proof of Lemma 4.5

In this section, we prove Lemma 4.5 concerning potential energy terms with one a0. Let
vj ∈ �∗ and vj �= 0 for j = 1,2,3. Define PH,c as the following subset of PH :

PH,c = {k ∈ PH : |k| ≤ kc}. (8.1)

The following lemma classify all possible scenarios of v1, v2, v3. Through out this section,
we assume that vi �= 0 for i = 1,2,3.

Lemma 8.1 Suppose β,α ∈ M and 〈α|a†
0a

†
v1

av2av3 |β〉 �= 0. Then there are only three possi-
bilities:

1.

v1 ∈ PL, v2, v3 ∈ PH,c, vi �= ±vj for i �= j. (8.2)



The Second Order Upper Bound for the Ground Energy of a Bose Gas 487

2.

v1 ∈ PH,c, v2 ∈ PL, v3 ∈ PH,c, vi �= ±vj for i �= j ; or 2 ↔ 3. (8.3)

3.

v1 ∈ PL, v2 ∈ PL, v3 ∈ PL. (8.4)

Proof Since particles with momenta in PI are always created in pair, e.g., (u,−u), either
none of vi ’s belongs to PI or two of them belong to PI . Thus we have:

v1, v2 ∈ PI ⇒ v1 = v2, or 2 ↔ 3, (8.5)

v2, v3 ∈ PI ⇒ v2 = −v3. (8.6)

If two of vi ’s are in PI , by the momentum conservation v1 = v2 + v3 the other one must be
equal to zero, which is a contradiction. Therefore

vi /∈ PI , for 1 ≤ i ≤ 3. (8.7)

The restriction |vi | ≤ kc follows from the construction of M . Therefore, we have

vi ∈ PL ∪ PH,c, for 1 ≤ i ≤ 3. (8.8)

Since particles in PH,c are always created in soft pair creations which generated two
particles in PH,c , the number of particles in PH,c is even. So either none of vi ’s are in PH,c

or two of them are in PH,c. Together with (8.8), and momentum conservation, we prove the
lemma. �

For fixed v1, v2, v3, define

F(α) ≡
∑

i:vi∈PL,i=1,2,3

|α(vi) − α(−vi)|. (8.9)

Lemma 8.2 For any α,β ∈ M if 〈α|a†
0a

†
v1

av2av3 |β〉 �= 0 and vi �= ±vj , we have:

F(α) + F(β) = #{i = 1,2,3 : vi ∈ PL}. (8.10)

Furthermore, the ratio between f (α) and f (β) is bounded as follows.

ρ
1
20

√
N

F(α)−F(β) ≤
∣∣∣∣ f (β)

√
λv1

f (α)
√

λv2λv3α(0)/�

∣∣∣∣ ≤ ρ
−1
20

√
N

F(α)−F(β)
. (8.11)

Proof Since vi �= ±vj , for each i fixed, if α ∈ Ma
vi

, then β ∈ Ms
vi

and vice verse. This proves
(8.10).

Recall the definition of f in (3.18). Then one can check the ratio involving f (β)/f (α)

in (8.11) depends only on the last factor

∏
u∈PL,α∗(u)−α(u)=1

√
4α∗(u)λu|�|−1.
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We now use (5.10) to bound λ in this expression. Since F(α) counts how many times this
factor appears, this proves (8.11). �

Using the definitions of ηL and mc, the bound α(0)/� ≤ ρ and lemma 7.1, we have

|f (α)f (β)〈α|a†
0a

†
v1

av2av3 |β〉|

≤ √
N

F(α)−F(β)+1
ρ

−1
20

√
ρ

∣∣∣∣λv2λv3

λv1

∣∣∣∣
√

α(v1)(α(v2) + 1)(α(v3) + 1)|f (α)|2 (8.12)

and

|f (α)f (β)〈α|a†
0a

†
v1

av2av3 |β〉|

≤ √
N

F(β)−F(α)+1
ρ

−1
20

√
|λv1λ

−1
v2

λ−1
v3

|ρ−1
√

(β(v1) + 1)β(v2)β(v3)|f (β)|2. (8.13)

Lemma 4.5 follows from summing the three inequalities of the following lemma.

Lemma 8.3 In the limit kc → ∞, ρ → 0, we have

lim
kc, ρ

|�|−2ρ−5/2
∑
(8.2)

〈Vv2a
†
0a

†
v1

av2av3〉 = −2‖V w‖1
g

3/2
0

3π2
, (8.14)

lim
kc, ρ

|�|−2ρ−5/2
∑
(8.3)

|Vv2〈a†
0a

†
v1

av2av3〉| = 0, (8.15)

lim
kc, ρ

|�|−2ρ−5/2
∑
(8.4)

|Vv2〈a†
0a

†
v1

av2av3〉| = 0. (8.16)

Proof We first prove (8.14) concerning (8.2), which implies that F(α) + F(β) = 1. By the
bounds on λu in (5.10) and α∗(u) ≤ mc for u ∈ PL, we have, for F(β) = 0 the following
slightly modified version of (8.13)

|f (α)f (β)||〈α|a†
0a

†
v1

av2av3 |β〉| ≤ ρ
−1
10 ρ−1

√
|λ−1

v2
λ−1

v3
|√β(v2)β(v3)|f (β)|2. (8.17)

Here we replaced ρ−1/20 in (8.13) by ρ−1/10 to accommodate small errors. Summing over β

with F(β) = 0, we have

∑
F(β)=0

f (β)f (α)|〈α|a†
0a

†
v1

av2av3 |β〉| ≤ ρ−11/10
√

|λ−1
v2

λ−1
v3

|Q�(u, v). (8.18)

Using the bound (5.42) on Q�(u, v) and |λu| ≤ g0|u|−2, we obtain that (8.18) = o(ρ2).
Since F(α) + F(β) = 1, the other case is F(α) = 0. Hence we have

〈a†
0a

†
v1

av2av3〉 = A1 + A2 + o(ρ3/2), (8.19)

A1 =
∑

F(α)=0

√
α(0)α(v1)f (α)f (β),

A2 =
∑

F(α)=0

√
α(0)α(v1)

(√
(α(v2) + 1)(α(v3) + 1) − 1

)
f (α)f (β).



The Second Order Upper Bound for the Ground Energy of a Bose Gas 489

By the estimate (8.11) and the Schwarz inequality |2(
√

(a + 1)(b + 1) − 1)| ≤ a + b, we
have

|A2| ≤ ρ4/5
∑

F(α=0)

α(v2) + α(v3)

2
|f (α)|2

≤ ρ4/5(Q�(v2) + Q�(v3)) ≤ o(ρ2), (8.20)

where we have used the bounds on λ’s and Q�(u) for u ∈ PH .
By the property (5.7) for f , we have

A1 = 2
√

λv2λv3

∑
F(α)=0

α(0)α(v1)|�|−1|f (α)|2. (8.21)

We notice
∑

F(α)=0

α(0)α(v1)|f (α)|2 = Q�(0, v1)|�|−1 −
∑

α∈Ma
v1

α(0)α(v1)|�|−1|f (α)|2. (8.22)

The absolute value of the second term is less than ρmc

∑
α∈Ma

v1
|f (α)|2. By (5.23), it is

less than ρ7/4. Then with |√λv2λv3 | ≤ O(ε−2
H ), we obtain

〈a†
0a

†
v1

av2av3〉 = 2
√

λv2λv3Q�(0, v1)|�|−1 + o(ρ3/2). (8.23)

Recall λu = −wu for u ∈ PI ∪ PH and wu = w−u due to our assumption on V . Since
v1 ≤ PL ∼ √

ρ and v2 = −v3 + v1 and v2 ∈ PH,c , we can check that

∣∣λv2 − λv3

∣∣ ≤ ρ1/3. (8.24)

Inserting this in (8.23), we arrive at

〈a†
0a

†
v1

av2av3〉 = 2λv2Q�(0, v1)|�|−1 + o(ρ5/4). (8.25)

In the limit kc → ∞, ρ → 0, we have

|�|−2
∑

v1∈PL,v2∈PH,c

〈Vv2a
†
0a

†
v1

av2av3〉 = −‖V w‖1|�|−2
∑

v1∈PL

Q�(0, v1) + o(ρ5/2). (8.26)

We note

|�|−2
∑

v1∈PL

Q�(0, v1) = ρ|�|−1Q�(0)−|�|−2Q�(0,0)−|�|−2
∑

u∈PI ∪PH

Q�(0, u). (8.27)

The last term is less than N |�|−2
∑

u∈PI ∪PH
Q�(u) ≤ o(ρ5/2) by Theorem 5.1. Together

with Lemmas 5.6, 5.3 on Q�(0,0) and Q�(0), we can compute the first two terms, i.e.,

|�|−2
∑

v1∈PL

Q�(0, v1) = ρ0(ρ − ρ0) + o(ρ5/2). (8.28)

This yields (8.14).
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We next prove (8.15) concerning (8.3). Without loss of generality we assume that

v1,3 ∈ PH,c and v2 ∈ PL. (8.29)

Following similar arguments in the previous proof, i.e., using Lemma 7.1, (8.12) or (8.13)
and the bounds on λu’s, we have

|〈a†
0a

†
v1

av2av3〉| ≤
∑

F(α)=0

ρ− 1
10

√
α(v1)(α(v3) + 1)|λ−1

v1
||f (α)|2

+
∑

F(β)=0

ρ− 1
10

√
β(v3)(β(v1) + 1)|λ−1

v3
||f (β)|2. (8.30)

For the upper bound, we can replace
∑

F(α)=0 by
∑

α∈M . Using the upper bounds (5.15) and

(5.42) on Q�(u) and Q�(u, v) for u,v ∈ PH , we obtain |〈a†
0a

†
v1

av2av3〉| ≤ const. ρ3/2. This
proves (8.15).

We now prove (8.16) concerning vi ∈ PL satisfying F(α)+F(β) = 3. It is easy to prove
that the contribution from the special cases, v1 = −v2 (or v3) or v2 = v3, is negligible,

lim
ρ

∑
special cases

|Vv2〈a†
0a

†
v1

av2av3〉|ρ−5/2|�|−2 = 0. (8.31)

So from now on we assume that vi �= ±vj for i �= j . As before, we rewrite 〈a†
0a

†
v1

av2av3〉 by
using Lemma 7.1 and (8.12) or (8.13). Together with the bounds on λu’s and α(vi) ≤ mc ,
we have

|〈a†
0a

†
v1

av2av3〉| ≤
∑

F(α)=0

N−1ρ− 1
10 |f (α)|2 +

∑
F(α)=1

ρ− 1
10 |f (α)|2

+
∑

F(β)=0

N−1ρ− 1
10 |f (β)|2 +

∑
F(β)=1

ρ− 1
10 |f (β)|2. (8.32)

By symmetry, we only need to estimate the first two terms on the rhs The first term is less
than N−1ρ− 1

10 . For the second term, we note F(α) = 1 implies that there exists i,1 ≤ i ≤ 3
such that α ∈ Ma

vi
. By (5.23), we have

∑
F(α)=1

|f (α)|2 ≤ ρ3/4. (8.33)

This implies |〈a†
0a

†
v1

av2av3〉| ≤ ρ1/2 and (8.16), which complete the proof. �

9 Interaction Energy with Four Nonzero Momenta: The Classification

In the next three sections, we will prove Lemma 4.6 involving interaction energy without
a0. We will show that the only contribution to the accuracy we need comes from four high
momentum particles, to be computed in next section. In this section, we start the procedure
of identifying the error terms.

For α,β ∈ M , we have the following lemma, similar to Lemma 8.1 and Lemma 8.2.
Since it can be proved by same method, we will only state the result.
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Lemma 9.1 Suppose vi �= 0,1 ≤ i ≤ 4 and v1 + v2 �= 0, v1 �= v3 or v4. If
〈α|a†

v1
a†

v2
av3av4 |β〉 �= 0 for some α,β ∈ M , then there are exactly four cases:

1. All of vi ∈ PL for 1 ≤ i ≤ 4.
2. v1, v2 ∈ PL, v3, v4 ∈ PH,c.
3. One of v1, v2 is in PL and the other is in PH,c; one of v3, v4 is in PL and the other is in

PH,c.
4. All of vi ∈ PH,c for 1 ≤ i ≤ 4.

If vi �= ±vj , for 1 ≤ i, j ≤ 4, we have

ρ
1
20

√
N

F(α)−F(β) ≤
∣∣∣∣f (β)

√
λv1λv2

f (α)
√

λv3λv4

∣∣∣∣ ≤ ρ
−1
20

√
N

F(α)−F(β)
, (9.1)

|f (α)f (β)〈α|a†
v1

a†
v2

av3av4 |β〉|

≤ √
N

F(α)−F(β)
ρ

−1
20

√
λv3λv4

λv1λv2

√
α(v1)α(v2)(α(v3) + 1)(α(v4) + 1)|f (α)|2 (9.2)

and

|f (α)f (β)〈α|a†
v1

a†
v2

av3av4 |β〉|

≤ √
N

F(β)−F(α)
ρ

−1
20

√
λv1λv2

λv3λv4

√
(β(v1) + 1)(β(v2) + 1)β(v3)β(v4)|f (β)|2. (9.3)

Proposition 9.1 For u ∈ PL and v ∈ PH,c, we have the following inequality

∑
α∈Ma

u

α(v)|f (α)2| ≤ |λv|ρ3− 1
10 . (9.4)

Proof By definition of M (3.9), for any α ∈ Ma
u , there exist β ∈ Ms

u and k such that
Au,kβ = α and ±k + u/2 ∈ PH,c . Clearly, for any v ∈ PH we have α(v) ≤ β(v) + 1 and
the case we need the constant 1 occurs only when v = k + u/2 or v = −k + u/2. Hence we
can bound the left hand side of (9.4) by

∑
β

∑
k:±k+u/2∈PH,c

β(v)|f (Au,kβ)2| +
∑

β

∑
k:±k+u/2=v

|f (Au,kβ)2|. (9.5)

Recall (5.7) implies that

|f (Au,kβ)|2 ≤ |f (β)|2ρmc|�|−1|λk+u/2λ−k+u/2|. (9.6)

By the bound (5.11) on λ, we obtain that

(9.5) ≤
∑

β

β(v)|f (β)|2 ρmc

|�|
[ ∑

±k+u/2∈PH

|λk+u/2λ−k+u/2|
]

+ |λv| |�|−1

≤ Q�(v)ρmcε
−4
H k3

c + |λv| |�|−1. (9.7)

Using Proposition 5.4, we have proved (9.4). �
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Lemma 9.2 We have the following estimates on the interaction energies:

lim
mc,ρ

ρ−5/2|�|−2
∑

v1,v2,v3,v4∈PL

|Vv1−v3〈a†
v1

a†
v2

av3av4〉� | = 0, (9.8)

lim
mc,ρ

ρ−5/2|�|−2
∑

v1+v2 �=0,v1,v2∈PL,v3,v4∈PH

|Vv1−v3〈a†
v1

a†
v2

av3av4〉� | = 0, (9.9)

lim
mc,ρ

ρ−5/2|�|−2
∑

v1,v3∈PL,v2,v4∈PH

|Vv1−v3〈a†
v1

a†
v2

av3av4〉� | = 0. (9.10)

In other words, the contributions from case 1, 2 and 3 in Lemma 9.1 are negligible for our
purpose.

Proof We first prove the (9.8) concerning vi ∈ PL. By Lemma 7.1, we have

|〈a†
v1

a†
v2

av3av4〉� | ≤
∑

α

|f (α)f (T (α))|m4
c . (9.11)

Using the Schwarz inequality, we have |〈a†
v1

a†
v2

av3av4〉� | ≤ m4
c . The summation over the vi

with vi = ±vj for some 1 ≤ i < j ≤ 4 is negligible in the sense that

|�|−2
∑

v1,v2,v3,v4∈PL,vi=±vj

|〈a†
v1

a†
v2

av3av4〉� | ≤ o(ρ5/2). (9.12)

From now on, we assume that vi �= ±vj for any 1 ≤ i < j ≤ 4.
Using (9.2), (9.3) and the bounds (5.10) on λ, we have

|〈a†
v1

a†
v2

av3av4〉� | ≤
∑

F(α)≤1

ρ
−1
10 N−1|f (α)2|

+
∑

F(α)=2

ρ
−1
10 |f (α)2| +

∑
F(β)≤1

ρ
−1
10 N−1|f (β)2|.

By (5.24), we have |〈a†
v1

a†
v2

av3av4〉� | ≤ ρ9/5. Together with (9.12) and � = ρ−25/8, we can
sum over vj to have

|�|−2
∑

v1,v2,v3,v4∈PL

〈a†
v1

a†
v2

av3av4〉� ≤ o(ρ5/2). (9.13)

We now prove (9.9) concerning v1,2 ∈ PL and v3,4 ∈ PHc . As before, by (9.2), (9.3), (5.10)
and (5.11), we have

|〈a†
u1

a†
u2

au3au4〉� | =
∑

F(α)=0

N−1ρ
9
10
√

(α(v3) + 1)(α(v4) + 1)|f (α)|2

+
∑

F(β)≤1

ρ
−11
10

√
β(v3)β(v4)

λv3λv4

|f (β)|2.
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By the Schwarz inequality, we have that the first term in rhs is o(ρ4). Since v3, v4 ∈ PH , by
(5.42) we obtain that the second term in rhs is o(ρ11/4). So

|〈a†
v1

a†
v2

av3av4〉� | ≤ ρ
11
4 . (9.14)

Summing over vj ’s, we have proved (9.8).
Finally, we prove (9.10) concerning v1,3 ∈ PL and v2,4 ∈ PH . Again, with (9.2), (9.3) and

the bounds on λ’s in (5.10) and (5.11), we have

|〈a†
v1

a†
v2

av3av4〉� | ≤ Q1 + Q2 + Q3, (9.15)

Q1 =
∑

F(α)=0

N−1ρ
−1
10

√
α(v2)(α(v4) + 1)

|λv2 |
|f (α)|2, (9.16)

Q2 =
∑

F(β)=0

N−1ρ
−1
10

√
α(v4)(α(v2) + 1)

|λv4 |
|f (β)|2, (9.17)

Q3 =
∑

F(α)=1

ρ
−1
10

√
α(v2)(α(v4) + 1)

|λv2 |
|f (α)|2. (9.18)

By Theorem 5.1 and the fact
√

x ≤ x for x ∈ N, we have

Q1 ≤ N−1ρ
−1
10 λ−1/2

v2
(Q�(v2) + Q�(v2, v4)) ≤ ρ3,

where we have used the bounds (5.15) and (5.42) on Q�(u) and Q�(u, v). Similarly, we
have Q2 ≤ ρ3. Again using the fact

√
x ≤ x for x ∈ N, we have

Q3 ≤
∑

F(α)=1

ρ
−1
10 α(v2)|λv2 |−1/2|f (α)|2 + ρ− 1

10 |λv2 |−1/2Q�(v2, v4)

≤
∑

F(α)=1

ρ
−1
10 α(v2)|λv2 |−1/2|f (α)|2 + ρ3,

where we have used (5.42). We can estimate the first term in rhs by (9.4). Collecting all
these bounds, we have proved that

|〈a†
v1

a†
v2

av3av4〉� | ≤ ρ2.7. (9.19)

Summing over vj ’s, we have proved (9.10). �

10 Interaction Energy with Four High Momentum Legs I: The Main Term

We now estimate of the interaction energy in the case 4 of Lemma 9.1, i.e., ki, i = 1,2,3,4
satisfy

k1 + k2 = k3 + k4, k1 + k2 �= 0, k1 �= k3, k1 �= k4, ki ∈ PH,c. (10.1)

In the remainder of this paper, all pi ’s, qi ’s, ki ’s belong to PH,c and ui , vi ’s belong to PL.
We start with some special cases.
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Lemma 10.1 Suppose ki satisfy (10.1). Then we have

∑
k1,k3

|Vk1−k3〈a†
k1

a
†
k1

ak3ak4〉| = o(ρ5/2|�|2), (10.2)

∑
k1,k2

|V2k1〈a†
k1

a
†
k2

a−k1ak4〉| = o(ρ5/2|�|2). (10.3)

Proof By definition of f , if 〈α|a†
k1

a
†
k1

ak3ak4 |β〉 �= 0, then

f (α) =
√∣∣∣∣λv1λv2

λv3λv4

∣∣∣∣f (β). (10.4)

Using Lemma 7.1, we have

|〈a†
k1

a
†
k2

ak3ak4〉| =
∑

β

√∣∣∣∣λk1λk2

λk3λk4

∣∣∣∣
2∏

i=1

√
(β(ki) + 1)

4∏
i=3

√
β(ki)|f (β)|2. (10.5)

Consider first the case k1 = k2 and, by (10.1), k3 �= k4. Using the estimates (5.11) for λki
, we

have

|〈a†
k1

a
†
k1

ak3ak4〉| = |λv3λv4 |−
1
2 ρ− 1

10 (Q�(k1, k3, k4) + Q�(k3, k4)). (10.6)

Since
∑

k1
Q�(k1, k3, k4) ≤ NQ�(k3, k4), we have

∑
k1

|〈a†
k1

a
†
k1

ak3ak4〉| = |λv3λv4 |−
1
2 ρ− 1

10 (NQ�(k3, k4) + �k3
cQ�(k3, k4)).

With k3 �= ±k4 and the bound on Q�(k3, k4) in (5.42), we arrive at the desired result (10.2).
The case k1 = −k3 can be proved in a similarly way by using

√
(β(k1) + 1)(β(k2) + 1) ≤ 1

2 (β(k2) + β(k1) + 2). �

By symmetry, we can prove some other special cases such as k1 = −k4 are negligible. So
from now on we focus on the cases

k1 + k2 = k3 + k4, ki ∈ PH,c, ki �= ±kj for i �= j. (10.7)

This condition will be imposed for the rest of this section. Denote by M[k1, k2] the set of all
states created by a soft pair creation Ak1+k2, k1/2−k2/2 from another state, i.e.,

M(k1, k2) ≡ {β ∈ M|∃α ∈ Ms
k1+k2

such that Ak1+k2, k1/2−k2/2α = β} (10.8)

if k1 + k2 ∈ PL. Otherwise, we set M[k1, k2] = ∅. Notice that

|Ak1+k2, k1/2−k2/2α〉 = Ca
†
k1

a
†
k2

ak1+k2a0|α〉
for some normalization constant C. Hence for β,γ ∈ M , if

〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 �= 0,
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we have k1 + k2 = k3 + k4 and

Ak1+k2, k1/2−k2/2α = β ⇔ Ak3+k4, k3/2−k4/2α = γ. (10.9)

The main contribution of the four nonvanishing leg term is identified in the next lemma.

Lemma 10.2

lim
kc,ρ

ρ−5/2|�|−2
∑
(10.7)

∑
β∈M(k1,k2)

Vk1−k3f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉

≤ 4‖w2V ‖1
1

3π2
g

3/2
0 . (10.10)

Proof By (10.9), we have

∑
β∈M(k1,k2)

f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉

=
4∏

i=1

√
λki

∑
α∈Ms

k1+k2

4|f (α)|2|�|−2α(0)α(k1 + k2)

4∏
i=1

√
(α(ki) + 1). (10.11)

We claim that (10.11) is very close to the following expression:

4∏
i=1

√
λki

∑
α∈Ms

k1+k2

4|f (α)|2|�|−2α(0)α(k1 + k2). (10.12)

For xi ≥ 0, we have

1 ≤ √
(x1 + 1)(x2 + 1)(x3 + 1)(x4 + 1) ≤ 1

4
(x1 + x2 + 2)(x3 + x4 + 2). (10.13)

Since α(0) ≤ N and α(k1 + k2) ≤ mc , we have

|(10.11) − (10.12)|∣∣∣∏4
i=1

√
λki

∣∣∣ ≤ 4mcρ

|�|
(∑

i

Q�(ki) +
∑
i,j

Q�(ki, kj )

)
≤ ρ2

|�| (10.14)

where we have used (5.15) and (5.42).
By definition, Q�(0, k1 + k2) = ∑

α∈M α(0)α(k1 + k2). Together with α(0) ≤ N and
α(k1 + k2) ≤ mc , we have

∣∣∣∣ (10.12)∏4
i=1

√
λki

− 4|�|−2Q�(0, k1 + k2)

∣∣∣∣ ≤ 4mcρ

|�|
∑

α∈Ma
k1+k2

|f (α)|2. (10.15)

Using the bound (5.23) concerning
∑

α∈Ma
k1+k2

, we have

∣∣∣∣ (10.12)∏4
i=1

√
λki

− 4|�|−2Q�(0, k1 + k2)

∣∣∣∣ ≤ ρ3/2|�|−1. (10.16)
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Combining (10.14), (10.16), with the bounds on λ in (5.11), we have:

∣∣∣∣∣(10.11) −
4∏

i=1

√
λki

4|�|−2Q�(0, k1 + k2)

∣∣∣∣∣ ≤ ρ5/4

|�| . (10.17)

Since λp = −wp = −gpp−2 for p ∈ PH and |gp − gq | ≤ const. ||p| − |q||, we have for
p,q ∈ PH,c with p + q ∈ PL

|λp − λq | ≤ const. ε−1
H ||p| − |q|| ≤ ρ3/4. (10.18)

This implies ||√λp| − |√λq || ≤ ρ3/8. Applying these results to
∏4

i=1

√
λki

with k1 + k2 =
k3 + k4 ∈ PL, we have ∣∣∣∣∣

4∏
i=1

√
λki

− λk1λk3

∣∣∣∣∣ ≤ ρ1/4. (10.19)

Inserting this inequality into (10.17) and using Q�(0, k1 + k2) ≤ Nmc , we obtain

|(10.11) − 4λk1λk3 |�|−2Q�(0, v)| ≤ ρ5/4mc|�|−1, v = k1 + k2. (10.20)

Summing over v ∈ PL and k1, k3 ∈ PH,c , we have that the left hand side of (10.10) is equal
to

lim
kc→∞,ρ→0

4‖w2V ‖1

∑
v∈PL

Q�(0, v)ρ−5/2|�|−2. (10.21)

With (8.28), we have proved (10.10). �

11 Interaction Energy with Four High Momentum Legs II: The Error Terms

Our goal in this section is to prove that the interaction energy associated with four high
momentum legs which are not covered by Lemma 10.2 is negligible. We state it as the fol-
lowing lemma. Notice that Lemma 4.6 follows from the results in the previous two sections
and this lemma.

Lemma 11.1

lim
kc,ρ

∑
(10.7)

∑
β /∈M(k1,k2)

∣∣∣∣Vk1−k3

|�| f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉
∣∣∣∣(ρ5/2�)−1 = 0. (11.1)

We start with the following lemma.

Lemma 11.2

lim
kc,ρ

∑
(10.7)

∑
β,γ :β /∈M(k1,k2)

|f (β)f (γ )| ≤ � ≤ o(ρ5/2|�|2) (11.2)

where the summation is restricted to all β,γ ∈ M such that

〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 �= 0. (11.3)
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Proof In this section, we use the following notations:

A−k,kα ≡ Akα and A−k+ u
2 , k+ u

2
α ≡ Au,kα. (11.4)

For any {v1, . . . , vt } ⊂ PL such that vi �= ±vj ,1 ≤ i, j ≤ t and α ∈ Ms
vi
,1 ≤ i ≤ t , define

M(α, s, {v1, . . . , vt }) ≡
{

t+s∏
i=1

A
qi ,q

′
i
α, qi, q

′
i ∈ PH,c, qi + q

′
i = ui

}
(11.5)

where ui = vi,1 ≤ i ≤ t and ui = 0 otherwise. Since vi ∈ PL and all other momenta are in
PH,c , Aqi ,q

′
i
’s commutes with one another.

Proposition 11.1 For any χ ∈ M , there exists (α, s, {v1, . . . , vt }) such that

χ ∈ M(α, s, {v1, . . . , vt }). (11.6)

Proof By definition of M , we can write the state |χ〉 as follows:

|χ〉 =
t∏

i=1

Api ,p
′
i

s∏
k=1

Aqk,−qk

w∏
j=1

(Auj ,−uj
)nj |N〉, (11.7)

where uj /∈ PH,c , vi := pi + p′
i ∈ PL, pi,p

′
i , qk ∈ PH,c . Furthermore, we require that uj �=

±uj ′ for j �= j ′ and vi �= ±vi′ for i �= i ′. Notice that Ap,p′ commute with Aq,−q so that their
orderings are not important. Clearly, the choice of

α =
w∏

j=1

(Auj ,−uj
)nj |N〉 (11.8)

yields that χ ∈ M(α, s, {v1, v2, . . . , vt }) and this proves the proposition. �

For any β,γ satisfying (11.3), we have β(u) = γ (u) for u ∈ PL ∪ PI ∪ P0. From the
proof of Proposition 11.1, there exists (α, s, {vi,1 ≤ i ≤ t}) such that

β and γ ∈ M(α, s, {v1, . . . , vt }). (11.9)

Notice α is the same for both β and γ and α ∈ Ms
u for any u ∈ PL.

For any (α, s, {v1, . . . , vt }), define N(α, s, {v1, . . . , vt }) as the set of the pairs (β, γ ) such
that

1. β , γ ∈ M(α, s, {v1, . . . , vt })
2. there exist ki, i = 1, . . . ,4 satisfying (10.7), β /∈ M(k1, k2) and (11.3) holds
3. for any other α′, s ′, {v′

1, . . . , v
′
t ′ } s.t. β,γ ∈ M(α′, s ′, {v′

1, . . . , v
′
t ′ }), then

s + t ≤ s ′ + t ′. (11.10)

We assume (β, γ ) ∈ M(α, s, {v1, . . . , vt }) and (11.3) holds. Clearly, s + t = 1 or t = 0 im-
plies that β ∈ M[k1, k2]. Hence if N(α, s, {v1, . . . , vt }) is not an empty set then

s + t ≥ 2 and t ≥ 1. (11.11)
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By definition of N(α, s, {v1, . . . , vt }), we have

∑
(10.7)

∑
β /∈M(k1,k2)

|f (β)f (γ )|

≤
∑

α,s,{v1,...,vt }
|N(α, s, {v1, . . . , vt })| max

β,γ∈M(α,s,{v1,...,vt })
|f (β)f (γ )|, (11.12)

where |N(α, s, {v1, . . . , vt })| is the cardinality of N(α, s, {v1, . . . , vt }). By definition of f , if
β,γ ∈ M(α, s, {v1, . . . , vt }) then

|f (β)f (γ )| ≤
∣∣∣∣α(0)

|�|
∣∣∣∣
2s+t ∣∣∣∣ mc

|�|
∣∣∣∣
t

max
k∈PH

{λk}2t+s |f (α)|2. (11.13)

From (5.11) and mc = ρ−η, we have

max
β,γ∈M(α,s,{v1,...,vt })

|f (β)f (γ )| ≤ (const. ρ1−5η)2s+t |�|−t |f (α)|2.

Together with (11.12), the right hand side of (11.12) is bounded by

≤
∑

α,s,{v1,...,vt }
|N(α, s, {v1, . . . , vt })| (const. ρ1−5η)2s+t |�|−t |f (α)|2. (11.14)

Define N(α, s, t) and N(s, t) by

N(α, s, t) ≡ max
{v1,...,vt }

{|N(α, s, {v1, . . . , vt })|} , (11.15)

N(s, t) ≡ max
α

{N(α, s, t)} . (11.16)

With (11.14), we can bound (11.12) by

(11.12) ≤
∑
α,s,t

|f (α)|2
∑

{v1,...,vt }
N(α, s, t)(const. ρ1−5η)2s+t |�|−t

≤
∑
s,t

∑
{v1,...,vt }

N(s, t)(const. ρ1−5η)2s+t |�|−t . (11.17)

For fixed t the total number of set {v1, . . . , vt , vi ∈ PL} is bounded by

∑
{v1,...,vt }

1 ≤ (�ρ3/2η−3
L )t (t !)−1 ≤ (ρ1−5η)

3t
2 |�|t (t !)−1

From t ≤ (�ρ3/2η−3
L ) ≤ ρ−1.65 and (11.11), we have

∑
(10.7)

∑
β /∈M(k1,k2)

|f (β)f (γ )| ≤
ρ−1.65∑
t=1

∑
s:s+t≥2

N(s, t)(const. ρ1−5η)2s+ 5t
2 (t !)−1. (11.18)

Lemma 11.3 For any N(α, s, {v1, . . . , vt }), s + t ≥ 2 and t ≥ 1, we have

|N(α, s, {v1, . . . , vt })| ≤ t ! t ( t
2 )|�| s+t

2 +1(ρ−5η)t+s . (11.19)
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From this lemma and � = ρ− 25
8 , the right hand side of (11.18) is bounded above by

ρ−1.65∑
t≥1

∑
s:s+t>1

(ρ5/2|�|1/2t1/2)t (ρ2|�|1/2)s(const. ρ−35η/2)t+s�

=
ρ−1.65∑
t≥1

(const. ρ0.85t1/2)t
∑

s:s+t>1

(const. ρ0.35)s� ≤ �.

This proves Lemma 11.2. �

We now prove Lemma 11.3.

Proof Since (β, γ ) ∈ N(α, s, {v1, . . . , vt }), we can express them as

β =
s+t∏

j=t+1

Aq2j−1, q2j

t∏
i=1

Aq2i−1, q2i
α, γ =

s+t∏
j=t+1

Aq̃2j−1, q̃2j

t∏
i=1

Aq̃2i−1, q̃2i
α (11.20)

and q2i−1 + q2i = vi = q̃2i−1 + q̃2i for i = 1, . . . , t , q2j−1 +q2j = q̃2j−1 + q̃2j = 0 for t + 1 ≤
j ≤ s + t . From (11.3), we have

{q1, . . . , q2s+2t} − {k1, k2} = {q̃1, . . . , q̃2s+2t } − {k3, k4}. (11.21)

Denote the common elements in {qi} and {q̃i} by p1, p2, . . . , p2s+2t−2. Then we have

{qi} = k1, k2, p1, p2, . . . , p2s+2t−2, (11.22)

{q̃i} = k3, k4, p1, p2, . . . , p2s+2t−2. (11.23)

We now construct a graph with vertices {k1, k2, k3, k4,pi,1 ≤ i ≤ 2s + 2t − 2}. The edges
of the graphs consisting of β edges (q2i−1, q2i ),1 ≤ i ≤ s + t and γ edges (q̃2j−1, q̃2j ),1 ≤
i ≤ s + t . From (11.3), the graph can be decomposed into two chains and loops. Thus there
exist l, mi ∈ Z and 0 < m1 < m2 < · · · < ml = s + t such that

k1 ←→ p1 ←→ p2 ←→ p3 · · ·p2m1−1 ←→ k2 (or · · · k4)

k3 ←→ p2m1 ←→ p2m1+1 · · ·p2m2−2 ←→ k4 (or · · · k2)

p2m2−1 ←→ p2m2←→p2m2+1 · · ·p2(m3)−2 ←→ p2m2−1 (11.24)

· · ·
· · ·
p2ml−1−1 ←→ p2ml−1 ←→ p2ml−1+1 · · ·p2(ml )−2 ←→ p2ml−1−1.

Here we have relabeled the indices of p and do not distinguish β edges and α edges. We
also disregard the obvious symmetry k1 → k2 and k3 → k4. Due to the condition (11.10),
the length of the loop must be 4 or more, i.e., for 3 ≤ i ≤ l

mi−1 + 2 ≤ mi. (11.25)



500 H.-T. Yau, J. Yin

Together with ml = s + t , we obtain

l ≤ (s + t)/2 + 1, t ≥ 1. (11.26)

Without loss of generality, we assume for 3 ≤ i < j ≤ l

mi − mi−1 ≤ mj − mj−1. (11.27)

Denote by N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml}) the set of all pairs (β, γ ) having the graph
above and we now estimate its cardinality.

We can add the information between ki ’s and pi ’s as follows

k1
w1←→ p1

w̃1←→ p2
w2←→ p3 · · ·p2m1−1

wm1←→ k4 (or · · · k2)

k3

w̃m1←→ p2m1

wm1+1←→ p2m1+1 · · ·p2m2−2

w̃m2←→ k2 (or · · · k4)

p2m2−1

wm2+1←→ p2m2

w̃m2+1←→p2m2+1 · · ·p2(m3)−2

w̃m3←→ p2m2−1 (11.28)

· · ·
· · ·
p2ml−1−1

wml−1+1←→ p2ml−1

w̃ml−1+1←→ p2ml−1+1 · · ·p2(ml )−2

w̃ml←→ p2ml−1−1,

where A
c←→ B if and only if A + B = c. And wi ’s the union of s zero’s and {v1, . . . , vt },

so are w̃’s. By (11.20), β and γ is uniquely determined by wi ’s, w̃i ’s and one ki or pi for
each loop or chain.

To bound |N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml})|, we note that the sum of momentum in
each loop is zero. Thus we can count the number of graphs as follows.

1. choose the positions of zeros in β edges. The total number of choices is less than 2t+s

2. choose the positions of v1 · · ·vt in β edges. The total number of choices is t !
3. choose the positions of zeros in γ edges. The total number of choices is less than 2t+s

4. choose the positions of v1 · · ·vt in γ edges. We call a loop trivial if all the momenta
associated with γ edges are zero. The number of trivial loops is at most s/2 since there
are at least two γ edges per loop. Hence the number of non-trivial loops is at least l−s/2.
Thus we only have to fix v in at most t − (l − s/2) edges and the number of choices is at
most t t−l+s/2

Thus we obtain

|N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml})|
≤ (const.)t+s t !t (t+s/2−l)

(
k3

c�
)l

≤ (const.)t+s t !t (t/2)
(
k3

c�
)t/2+s/2+1

(11.29)

where we have used (11.26) Since

|N(α, s, {v1, . . . , vt })| =
∑

l

∑
{m1,...,ml }

|N(α, s, {v1, . . . , vt }, l, {m1, . . . ,ml})|
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and ∑
l

∑
{m1,...,ml }

1 ≤ const. s+t (11.30)

we have proved (11.19). �

We now prove Lemma 11.1.

Proof Let β , γ ∈ M s.t. 〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉 �= 0. Using Lemma 7.1 and the definition of f ,
we have

|f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉| = f (β)f (γ )
√

β(k1)β(k2)γ (k3)γ (k4)

≤ |f (β)|2
√∣∣∣∣λk3λk4

λk1λk2

∣∣∣∣(β(k1) + β(k2))
√

γ (k3)γ (k4).

(11.31)

From the bound on λki
’s in (5.11) and N = ρ−17/8, we have

|f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉| ≤ |f (β)|2(λk1λk2)
− 1

2 (β(k1) + β(k2))ρ
− 9

4 .

Since Q�({k,m}) decays exponentially with m for k ∈ PH (5.40), we have

∑
(10.7)

∑
β(k1)>3 or β(k2)>3

|f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉| ≤ o(ρ5/2|�|2). (11.32)

By symmetry, we have

∑
(10.7)

∑
γ (k3)>3 or γ (k4)>3

|f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉| ≤ o(ρ5/2|�|2). (11.33)

To prove (11.1), we only have to focus on the case β(ki) ≤ 3, i = 1,2 and γ (ki) ≤ 3, i = 3,4.
In this case, by (11.31), we have

|f (β)f (γ )〈β|a†
k1

a
†
k2

ak3ak4 |γ 〉| ≤ |const. f (β)f (γ )|. (11.34)

Using Lemma 11.2, we arrive at the desired result (11.1). �

12 Proof of Lemma 2.2

The proof of Lemma 2.2 is standard and only a sketch will be given. We first con-
struct an isometry between functions with periodic boundary condition in [0,L]3 and
functions with Dirichlet boundary condition in [−�,L + �]3. Denote the coordinates of
x by x = (x(1), x(2), x(3)). Let h(x) supported on [−�,L + �]3 be the function h(x) =
q(x(1))q(x(2))q(x(3)) where

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

cos[(x − �)π/4�], |x| ≤ �,

1, � < x < L − �,

cos[(x − (L − �))π/4�], |x − L| ≤ �,

0, otherwise.

(12.1)
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The function q(x) is symmetric w.r.t. x = L/2. Due to the property of cosine, for any func-
tion φ with the period L we have

∫
x∈[−�,L+� ]3

|hφ(x)|2 =
∫

x∈[0,L]3
|φ(x)|2. (12.2)

Thus the map φ −→ hφ is an isometry:

L2
Periodic([0,L]3) → L2

Dirichlet([−�,L + �]3).

Let χ(x) be the characteristic function of the �-boundary of [0,L]3, i.e., χ(x) = 1 if
|x(α)| ≤ � for some α = 1,2 or 3 where |x(α)| is the distance on the torus. Then standard
methods yield the following estimate on the kinetic energy of hφ

∫
x∈[−�,L+� ]3

|∇(hφ)(x)|2

≤
∫

x∈[0,L]3
|∇φ(x)|2 + const. �−2

∫
χ(x)|φ(x)|2. (12.3)

The generalization of this isometry to higher dimensions is straightforward. Suppose
�(x1, . . . ,xN) is a function with period L. Then for any u ∈ R

3, the map

F u(�) := �(x1, . . . ,xN)

N∏
i=1

h(xi + u) (12.4)

is an isometry from L2
Periodic([0,L]3N) to L2

Dirichlet([−� − u,L + � − u]3N). Clearly, F u has
the property (12.3).

The potential V can be extended to be periodic by defining V P (x − y) = V ([x − y]P )

where [x − y]P is the difference of x and y as elements on the torus [0,L]. Since V is
nonnegative and has fast decay in the position space, we have V (x − y) ≤ V P (x − y). From
the definition of F u, we conclude that

∫
|F u(�)|2V (x1 − x2)

N∏
i=1

dxi ≤
∫

[0,L]3N

|�|2V P (x1 − x2)

N∏
i=1

dxi .

Therefore, the energy of two boundary conditions are related by

〈HN 〉Fu(�) ≤ 〈HN 〉� + const. �−2
N∑

i=1

〈χ(xi + u)〉� . (12.5)

Averaging over u ∈ [0,L]3, we have

∫
[0,L]3

〈HN 〉Fu(�) du ≤ L3 〈HN 〉� + const. �−1L2N. (12.6)

So for any � there exists an u such that

〈HN 〉Fu(�) ≤ 〈HN 〉� + const.N

(
1

�L

)
. (12.7)
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If we choose � and L as

� = ρ−25/48, L = ρ−25/24, (12.8)

the error term is negligible to the accuracy we need in proving Lemma 2.2. This concludes
the proof of Lemma 2.2. �

References

1. Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk USSR 11(1), 77 (1947) (in Russian)
2. Bogoliubov, N.N.: On the theory of superfluidity. J. Phys. 11(1), 23–32 (1947) (in English)
3. Dyson, F.J.: Ground-state energy of a hard-sphere gas. Phys. Rev. 106, 20–26 (1957)
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